Answer:
The symbol of isotopes used for blood flow analysis is
<u>Explanation:
</u>
- Isotopes are the substances that exhibit the same atomic number but has a different mass number of an element.
- The atomic number explains the number of protons present in the element and mass number explains the number of neutrons available in the element.
- For blood flow analysis, the isotope element is cerium-141 and it is used in the chemical examination of blood flow particles.
- Symbol used for this isotope is
, where 141 indicates the amount of mass present and 58 indicates the proton number and 83 indicates neutron number present in that element.
- The amount of mass in an atom is calculated by the sum of protons and neutrons present in it. Thus mass of isotope is 141 obtained by the sum of 58 protons and 83 neutrons present in that isotope.
Answer:

Explanation:
Hello,
In this case, since the rate equation turns out as shown below due to the first-order kinetics:

Its integration results:

However, the rate constant is computed by considering the given half-life time as follows:

In such a way, the required time in minutes to diminish the concentration by 66.8% of the initial turns out:



Best regards.
Rhenium is a chemical element with the symbol Re and atomic number 75. The electron configuration of Re is [Xe]
.
<h3>
How to write an electronic configuration?</h3>
1. Identify the given element and its atomic number from the periodic table.
2. Write the electron configuration by the energy level and the type of orbital first, then the number of electrons present in the orbital as superscript.
The easiest way to write the electronic configuration for any element is by using a diagonal rule for electron filling order in the different subshells according to the Aufbau principle.
The 3 rules for writing the electron configuration in the orbital box diagram are – the Aufbau rule, the Pauli-exclusion rule, and Hund's Rule.
To learn more about electronic configuration, refer
https://brainly.ph/question/73419
#SPJ4
Answer:
![[Cl^-]=232.3\frac{mgCl^-}{L}](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D232.3%5Cfrac%7BmgCl%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, we can represent the chemical reaction as:

In such a way, since the mass of the obtained silver chloride is 93.9 mg, we can compute the chloride ions in the ground water by using the following stoichiometric procedure whereas the molar mass of chloride ions and silver chloride are 35.45 g/mol and 143.32 g/mol respectively:

Finally, for the given volume of water in liters (0.100L), we compute the required concentration:
![[Cl^-]=\frac{23.2mgCl^-}{0.100L}\\](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D%5Cfrac%7B23.2mgCl%5E-%7D%7B0.100L%7D%5C%5C)
![[Cl^-]=232.3\frac{mgCl^-}{L}](https://tex.z-dn.net/?f=%5BCl%5E-%5D%3D232.3%5Cfrac%7BmgCl%5E-%7D%7BL%7D)
Best regards.
Answer: Type of Chemical Reaction: For this reaction we have a combination reaction. Balancing Strategies: When we add zinc to hydrochloric acid we end up with zinc chloride, a salt, and hydrogen gas. This reaction is actually a good way to make hydrogen gas in the lab.