Answer:
262 kN/C
Explanation:
If the electrons is moving parallel, thus it has a retiline movement, and because the velocity is varing, it's a retiline variated movement. Thus, the acceleration can be calculated by:
v² = v0² + 2aΔS
Where v0 is the initial velocity (2.0x10⁷ m/s), v is the final velocity (4.0x10⁷ m/s), and ΔS is the distance (1.3 cm = 0.013 m), so:
(4.0x10⁷)² = (2.0x10⁷)² + 2*a*0.013
16x10¹⁴ = 4x10¹⁴ + 0.026a
0.026a = 12x10¹⁴
a = 4.61x10¹⁶ m/s²
The electric force due to the electric field (E) is:
F = Eq
Where q is the charge of the electron (-1.602x10⁻¹⁹C). By Newton's second law:
F = m*a
Where m is the mass, so:
E*q = m*a
The mass of one electrons is 9.1x10⁻³¹ kg, thus, the module of electric field strenght (without the minus signal of the electron charge) is:
E*(1.602x10⁻¹⁹) = 9.1x10⁻³¹ * 4.61x10¹⁶
E = 261,866.42 N/C
E = 262 kN/C
Answer:
The gravity on this planet is stronger than that of earth.
Explanation:
First we need to find the acceleration due to gravity value of this planet to compare its gravity force with that of the earth. Hence, we will use second equation of motion:
h = Vi t + (0.5)gt²
where,
h = height or depth of crater = 100 m
Vi = Initial Velocity of rock = 0 m/s
t = time = 4 s
g = acceleration due to gravity on this planet = ?
Therefore,
100 m = (0 m/s)(4 s) + (0.5)(g)(4 s)²
g = (200 m)/(16 s²)
g = 12.5 m/s²
on earth:
ge = 9.8 m/s²
Since,
ge < g
Therefore,
<u>The gravity on this planet is stronger than that of earth.</u>
Answer: E) A) salt water.
Explanation:
E) In equilibrium, pressure exerts equally in all directions, so for a given depth, the pressure is the same for all points located at the same depth, and it can be written as follows:
p = p₀ + ρ.g.h, where p₀ = atmospheric pressure, ρ=fluid density, h=depth from the surface.
A) The buoyant force, as discovered by Archimedes, is an upward force, that opposes to the weight of an object (as it is always downward), and is equal to the weight of the volume of the liquid that the object removes, which means that is proportional to the density of the liquid.
As salt water is denser than fresh water, the buoyant force exerted by the salt water is always greater than the one produced by the fresh water, so objects will float more easily in salt water than in fresh water.
In the limit, it is possible that one object float in salt water and sink in fresh water.
Nope. It's called 'centripetal' acceleration. The force that created it MAY be gravitational, but it doesn't have to be. For things on the surface of the Earth moving in circles, it's never gravity.