Answer:
A.The positive z-direction
Explanation:
We are given that
Linear charge density of long line which is located on the x-axis=
Linear charge density of another long line which is located on the y-axis=
We have to find the direction of electric field at z=a on the positive z-axis if
and
are positive.
The direction of electric field at z=a on the positive z-axis is positive z-direction .
Because
and
are positive and the electric field is applied away from the positive charge.
Hence, option A is true.
A.The positive z-direction
The way the sound waves hit your eardrums and they are moved by the sound pressure. Then your brain takes over from there.
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Via half-life equation we have:

Where the initial amount is 50 grams, half-life is 4 minutes, and time elapsed is 12 minutes. By plugging those values in we get:

There is 6.25 grams left of Ra-229 after 12 minutes.
When a star uses up all of it's energy and begins to die, it swells up to become a red giant star. This causes its surface gravity to decrease, thereby allowing some of its mass to escape into space.
A binary star is a pair of stars that orbit each other because of their gravitational attraction to each other. When one member of the binary pair uses up all of its energy and begins to die, it loses mass due to the reduction in surface gravity. But instead of escaping into space, this mass is attracted to the companion star because of its gravitational pull. That increases the mass of the companion star. In a process that takes thousands of years, enough matter is transfered that causes the temperature and pressure to increase sufficiently to result in nuclear fusion reactions on the companion star. When these nuclear reactions become extremely violent, the released nuclear energy increases the brightness of this companion star dramatically, thereby creating a nova.
Therefore, it is the dying of one of the stars in a binary system along with a sufficient transfer of star mass to sustain nuclear reactions that results in a nova.