1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rasek [7]
3 years ago
11

Consider a Carnot refrigeration cycle executed in a closed system in the saturated liquid-vapor mixture region using 0.96 kg of

refrigerant-134a as the working fluid. Is it known that the maximum absolute temperature in the cycle is 1.2 times the minimum absolute temperature, and the net work input to the cycle I s 22 kJ. If the refrigerant changes from saturated vapor to saturated liquid during the heat rejection process, determine he minimum pressure in the cycle.
Engineering
1 answer:
Eduardwww [97]3 years ago
8 0

Answer:

P_m_i_n= 356.9 KPa

Explanation:

Coefficient of performance (COP) of refrigeration cycle is given by:

COP=\frac{1}{\frac{T_H}{T_L}-1 }

We are given:

T_H=1.2T_L

COP=\frac{1}{1.2-1 }

COP= 5

We can also write Coefficient of performance (COP) of refrigeration cycle  as:

COP_R=\frac{Q_L}{W_i_n}

Amount of heat absorbed by low temperature reservoir can be found as:

Q_L=COP_R * W_i_n

Q_L=5 * 22 KJ

Q_L=110 KJ

According to first law of thermodynamics amount of heat rejected by hot reservoir is given by:

Q_H=Q_L + W_i_n

Q_H=110 KJ + 22 KJ

Q_H=132 KJ

We are given the mass of 0.96 kg. So,

q_H=\frac{Q_H}{m}

q_H=\frac{132 KJ}{0.96Kg}

q_H=137.5 KJ/Kg

Since it is a saturated liquid-vapour mixture q_H=h_f_g.

q_H=h_f_g=137.5 KJ/Kg

From Refrigerant 134-a tables T_H at h_f_g=137.5 KJ/Kg is 61.3 C. (We calculated this by interpolation)

Converting T_H from Celsius to Kelvin:

61.3^{o} C+273 = 334.3^{o} K

T_H= 334.3^{o} K

We are given:

T_H=1.2T_L

T_L=\frac{T_H}{1.2}

T_L=\frac{334.3}{1.2}

T_L=278.58^{o} K

Converting T_L from Kelvin to Celsius:

278.58^{o} K-273 = 5.58^{o} C

T_L= 5.58^{o} C

From Refrigerant 134-a tables P_m_i_n at T_L=5.58^{o} C is 356.9 KPa. (We calculated this by interpolation).

P_m_i_n= 356.9 KPa

You might be interested in
The present worth of income from an investment that follows an arithmetic gradient is projected to be $475,000. The income in ye
Nikitich [7]

Answer:

G = $37,805.65

Explanation:

I found this on another site:

475,000 = 25,000(P/A,10%,6) + G(P/G,10%,6)

475,000 = 25,000(4.3553) + G(9.6842)

9.6842G = 366,117.50

G = $37,805.65

4 0
3 years ago
Question # 5
spayn [35]

The statement which best characterizes the relationship between a general contractor and a construction manager is that; A construction manager subcontracts a general contractor to perform <em>work</em>.

A construction project manager is saddled with the responsibility of overseeing the planning and delivery of construction projects.

  • In essence, they ensure that work is completed on time and within budget. Other functions include organising logistics, delegation of work and tracking of spending.

A general contractor otherwise known as the prime contractor is responsible for the day-to-day oversight of a construction site,<em> employment of labour, management of vendors and trades, and most importantly, the communication of information to all involved parties throughout the course of a building project.</em>

  • <em>Ultimately</em><em>,</em><em> </em><em>the </em><em>relationship</em><em> </em><em>between</em><em> </em><em>a </em><em>general contractor and a construction manager is that; A construction manager subcontracts a general contractor to perform work.</em>

<em>Read </em><em>more</em><em>:</em>

<em>brainly.com/question/17157892</em>

3 0
3 years ago
The temperature of an electric welding arc is about?
N76 [4]

Answer:

The heat of the arc melts the surface of the base metal and the end of the electrode. The electric arc has a temperature that ranges from 3,000 to 20,000 °C

Explanation:

Welding fumes are complex mixtures of particles and ionized gases.

7 0
3 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
3 years ago
90% of traffic crashes are due to driver error.<br> True<br> False
kumpel [21]

90% of traffic crashes are due to driver error.

True

3 0
2 years ago
Read 2 more answers
Other questions:
  • 1. Copy the file Pay.java (see Code Listing 1.1) from the Student CD or as directed by your instructor. 2. Open the file in your
    10·1 answer
  • A piston–cylinder device contains a mixture of 0.5 kg of H2 and 1.2 kg of N2 at 100 kPa and 300 K. Heat is now transferred to th
    8·1 answer
  • Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stre
    10·1 answer
  • Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 270 K with a velocity of 180 m/s and e
    11·1 answer
  • Give two methods on how powder is produced in powder metallurgy.
    5·2 answers
  • Gshyevdnmdcicm gngjc
    13·1 answer
  • 8. What is the density of an object with a mass of 290.5 g and volume of 83 cm 3?​
    13·1 answer
  • Giving out 100 coins cuz why not?​
    11·1 answer
  • Why do giant stars become planetary nebulas while supergiant stars become supernovas when their nuclear fusion slows and is over
    8·1 answer
  • Technician A says the compressor is the dividing line of the refrigeration system, low- to high-side. Technician B says the expa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!