Answer:
pH measures ratio of H+ ions to OH- ions of substances
pOH measures ratio of OH- ions to H+ ions of substances
Explanation:
pH is a scale which measures the ratio of H+ ions to OH- ions to identify how acidic or basic a substance is. This is because acidic substances have high amounts of H+ ions and low amounts of OH- ions, and therefore have a higher ratio of H+ to OH- ions. (And vice versa for bases, low H+ to OH- ratio) On a pH scale, acidic substances have a pH of 0 to 7, water (neutral pH, not acidic nor basic) has a pH of 7, and bases have a pH of 7-14.
pOH is very similar to pH but measures the opposite: the ratio of OH- ions (indicative of a base) to H+ ions (indicative of an acid). Therefore the pH values are reversed on the scale: Basic substances have pOHs below 7, and acidic substances are above 7 on the pOH scale.
Fundamentally, these two scales measure the same thing is the same way, one just measures the ratio one way (H+:OH-), while the other measured them the other way (OH-:H+), resulting in flipped values on the scales:
pH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<---Acidic---> <------Basic------->
pOH: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
<----Basic----> <-----Acidic------->
Hope this helped!
B.) Valence Electrons. The nucleus of the valence electrons attracts and pulls atoms together.
The difference in the concentration of a substance between two areas is called the concentration gradient. When a region has a higher particle concentration than another, this is known as a concentration gradient. A concentration gradient will cause particles in passive transport to diffuse down it from higher concentration to lower concentration until they are evenly spaced.
The gradual separation of a region of high density from a region of low density in a solution in terms of the concentration of a dissolved material. Understanding how ions and particles flow randomly in a solution or gas depends on the concentration gradient.
To learn more about concentration, click here.
brainly.com/question/10725862
#SPJ4
<span>Copper metal (Cu) reacts with silver nitrate (AgNO3) in aqueous solution to form Ag and Cu(NO3)2. An excess of AgNO3 is present. The balanced chemical equation is shown below.
Cu + 2AgNO3 ---> Cu(NO3)2 + 2Ag
The molar mass of Cu is 63.5 g/mol. The molar mass of Ag is 107.9 g/mol. What mass, in grams, of Ag is produced from reaction of 31.75 g of Cu?
26.95
107.9
215.91
431.82</span>