Answer:A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons, is known as covalent bonding.
Explanation:
Answer:
Sedimentary rocks are usually formed under water when grains of broken rocks are glued together while igneous rocks form when melted rock (magma or lava) cools and metamorphic are rocks that once were igneous or sedimentary rocks but have been changed by pressure and temperature.
The object D is made up of material Lead. The correct option is D.
<h3>What is specific heat?</h3>
The specific heat is the amount of heat required to change the temperature by 1°C. It is denoted by C.
Two 1-kg objects, C and D, increase in temperature by the same amount, but the thermal energy transfer of object C is greater than the thermal energy transfer of object D. The object C has a specific heat of 235 J/kg-K.
Q = m C ΔT
Qc > Qd
The energy transfer is proportional to specific heat.
Specific heat of D must be less. The possible material with specific heat less than the given value is for Lead material.
Thus, the correct option is D.
Learn more about specific heat,
brainly.com/question/11297584
#SPJ1
Complete Question
A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.)
mm/s
Answer:
The drift velocity is 
Explanation:
From the question we are told that
The current on the copper is 
The cross-sectional area is
The number of copper atom in the wire is mathematically evaluated

Where
is the density of copper with a value 
is the Avogadro's number with a value 
Z is the molar mass of copper with a value 
So
Given the 1 atom is equivalent to 1 free electron then the number of free electron is

The current through the wire is mathematically represented as

substituting values

=> 