The distance covered is 1000 m
Explanation:
The rocket is moving by uniformly accelerated motion, so we can find the distance it covers by using the following suvat equation:

where
s is the distance covered
v is the final velocity
t is the time
a is the acceleration
For the rocket in this problem, we have:
v = 445 m/s is the final velocity
is the acceleration
t = 4.50 s is the time
Substituting, we find the distance covered:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
a. The particle has position vector


b. Its velocity vector is equal to the derivative of its position vector:

c. At
, the particle has position


That is, it's 56.0 m to the right and 49.0 m up relative to the origin, a total distance of
away from the origin in a direction of
relative to the positive
axis.
d. The speed of the particle at
is the magnitude of the velocity at this time:


Then its speed at this time is

The frequency of a sound wave or any wave for that matter is the reciprocal of the period. That is,
f = 1/T
Substituting the known value of period,
f = 1/(0.05 s)
f = 20 Hz
Thus, the frequency of the wave is equal to 20 Hz.
Answer:
See below
Explanation:
Vertical position = 45 + 20 sin (30) t - 4.9 t^2
when it hits ground this = 0
0 = -4.9t^2 + 20 sin (30 ) t + 45
0 = -4.9t^2 + 10 t +45 = 0 solve for t =4.22 sec
max height is at t= - b/2a = 10/9.8 =1.02
use this value of 't' in the equation to calculate max height = 50.1 m
it has 4.22 - 1.02 to free fall = 3.2 seconds free fall
v = at = 9.81 * 3.2 = 31.39 m/s VERTICAL
it will <u>also</u> still have horizontal velocity = 20 cos 30 = 17.32 m/s
total velocity will be sqrt ( 31.39^2 + 17.32^2) = 35.85 m/s
Horizontal range = 20 cos 30 * t = 20 * cos 30 * 4.22 = 73.1 m
Answer:
1 hour to ride his motorcycle