1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
5

The stopping distance of a vehicle is an important safety feature. Assuming a constant braking force is applied, use the work-en

ergy theorem to show that a vehicles stopping distance is proportional to the square of its initial speed. If an automobile traveling at 45 km/h is brought to a stop in 50 m, what would be the stopping distance for an initial speed of 90 km/h?
Physics
1 answer:
elena-14-01-66 [18.8K]3 years ago
3 0

Answer:

The stopping distance would be 200 m.

Explanation:

Hi there!

The work done to stop the vehicle is equal to its change in kinetic energy.

The equation of kinetic energy is the following:

KE = 1/2 · m · v²

Where:

KE = kinetic energy.

m = mass.

v = velocity.

The change in kinetic energy is calculated as follows:

ΔKE = final kinetic energy - initial kinetic energy

In this case, the vehicle is brought to stop, so, the final kinetic energy will be zero.

ΔKE = 0 - 1/2 · m · v²

The work done is calculated as follows:

W = F · d

Where:

W = work done

F = applied force

d = traveled distance (stopping distance in this case)

The force F is calculated as follows:

F = m · a

Where:

m = mass

a = acceleration

Then:

W = ΔKE

F · d = -1/2 · m · v²

m · a · d = -1/2 · m · v²

a · d = -1/2 · v²

d = -1/2 · v² / a

Let´s find the acceleration of the vehicle that is brought to stop in 50 m with an initial velocity of 45 km/h.

Let´s convert 45 and 90 km/h into m/s

45 km/h · 1000 m/ 1 km · 1 h /3600 s = 12.5 m/s

90 km/h · 1000 m/ 1 km · 1 h /3600 s = 25 m/s

The distance and velocity of the vehicle is calculated using the following equations:

x = x0 + v0 · t + 1/2 · a · t²

v = v0 + a · t

Where:

x = traveled distance at time t.

x0 = initial position.

v0 = initial velocity.

t = time.

a = acceleration.

v = velocity at time t.

Let´s place the origin of the frame of reference at the point where the vehicle begins to decelerate so that x0 = 0. When the vehicle stops, its velocity is zero. Let´s use the equation of velocity to find the time it takes the vehicle to stop (and travel a distance of 50 m):

v = v0 + a · t

0 = 12.5 m/s + a · t

-12.5 m/s / t = a

Using the equation of traveled distance, let´s find the time it takes the vehicle to travel 50 m until stop:

x = x0 + v0 · t + 1/2 · a · t²

Replacing a = -12.5 m/s / t

50 m = 12.5 m/s · t + 1/2 · (-12.5 m/s/t) · t²

50 m = 12.5 m/s · t - 6.25 m/s · t

50 m = 6.25 m/s · t

50 m/ 6.25 m/s = t

t = 8.0 s.

Then, the acceleration is the following:

-12.5 m/s / t = a

-12.5 m/s / 8 s = a

a = -1.5625 m/s²

Then, the stopping distance of the vehicle if it travels at an initial speed of 90 km/h would be the following:

d = -1/2 · v² / a

d = -1/2 ·(25 m/s)² / -1.5625 m/s²

d = 200 m

The stopping distance would be 200 m.

You might be interested in
A 2 kg ball if at rest. If the ball accelerates to 20 m/s, what is the change in momentum?
katrin [286]

Answer:

change in momentum

20m/s x2=40kg/m

4 0
3 years ago
A BMX bicycle rider takes off from a ramp at a point 2.4 m above the ground. The ramp is angled at 40 degrees from the horizonta
adoni [48]

Answer:

The BMX lands 5.4 m from the end of the ramp.

Explanation:

Hi there!

The position of the BMX is given by the position vector "r":

r = (x0 + v0 · t · cos α, y0 + v0 · t · sin α + 1/2 · g · t²)

Where:

r = position vector at time t

x0 = initial horizontal position

v0 = initial velocity

α = jumping angle

y0 = initial vertical position

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive)

Please, see the attached graphic for a better understanding of the situation. At final time, when the bicycle reaches the ground, the vector position will be "r final" (see figure). The y-component of the vector "r final" is - 2.4 m (placing the origin of the frame of reference at the jumping point). With that information, we can use the equation of the y-component of the vector "r" (see above) to calculate the time of flight. With that time, we can then obtain the x-component (rx in the figure) of the vector "r final". Then:

y = y0 + v0 · t · sin α + 1/2 · g · t²

-2.4 m = 0 m + 5.9 m/s · t · sin 40° - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 5.9 m/s · t · sin 40° + 2.4 m

Solving the quadratic equation:

t = 1.2 s

Now, we can calculate the x-component of the vector "r final" that is the horizontal distance traveled by the bicycle:

x = x0 + v0 · t · cos α

x = 0 m + 5.9 m/s · 1.2 s · cos 40°

x = 5.4 m

The BMX lands 5.4 m from the end of the ramp.

Have a nice day!

8 0
3 years ago
A sound wave from a police siren has an intensity of 100.0 W/m² at a certain point; a second sound wave from a nearby ambulance
Irina18 [472]

The sound level of the sound wave due to the ambulance is 140.

<h3>What do you mean by sound?</h3>

In terms of physics, the sound is a vibration that travels through a transmission medium like a gas, liquid, or solid as an acoustic wave. Sound is the reception of these waves and the brain's perception of them in terms of human physiology and psychology. Only acoustic waves with frequencies between roughly 20 Hz and 20 kHz, or the audio frequency range, can cause a human to have an auditory sensation. These are sound waves with wavelengths ranging from 17 meters (56 ft) to 1.7 millimeters in the air at atmospheric pressure (0.67 in). Ultrasounds are sound waves with a frequency higher than 20 kHz that are inaudible to humans. Infrasound refers to sound frequencies below 20 Hz. Animals of different species have different hearing ranges.

To learn more about sound, Visit:

brainly.com/question/9349349

#SPJ4

3 0
2 years ago
How many protons would the element with the atomic number 10 contain?
galben [10]
The atomic number is the same as the proton number so the answer would be D) 10
3 0
3 years ago
An 8.00 kg mass moving east at 15.4 m/s on a frictionless horizontal surface collides with a 10.0 kg object that is initially at
andrew-mc [135]

Answer:

9.3m/s

Explanation:

Based on the law of conservation of momentum

Sum of momentum before collision = sum of momentum after collision

m1u1 +m2u2 = m1v1+m2v2

m1 = 8kg

u1 = 15.4m/s

m2 = 10kg

u2 = 0m/s(at rest)

v1 = 3.9m/s

Required

v2.

Substitute

8(15.4)+10(0) = 8(3.9)+10v2

123.2=31.2+10v2

123.2-31.2 = 10v2

92 = 10v2

v2 = 92/10

v2 = 9.2m/s

Hence the velocity of the 10.0 kg object after the collision is 9.2m/s

6 0
3 years ago
Other questions:
  • The voltage between the cathode and the screen of a television set is 22 kV. If we assume a speed of zero for an electron as it
    5·1 answer
  • What is the total number of atoms in the formula?   NH 3
    15·1 answer
  • How many meters in 2.50 miles? (Use these two conversions: 1000 m = 1 km and 1.00 km = .621 mi )
    8·1 answer
  • Why does water in hot springs always remain hot? Why doesn't it's thermal energy spread out?​
    8·1 answer
  • Jenny and Fred both play a long note on their trombones. A stationary observer hears the sound increasing and decreasing repeate
    7·2 answers
  • Anya is observing an organism in the laboratory. The table below shows her observations. *
    10·1 answer
  • A car is stopped at a red light. When the light turns green, it accelerates up
    10·1 answer
  • Someone please help​
    7·1 answer
  • This may seem a little personal, but how do you ask a girl out that doesn't seem to have intrest in you? I'll give brainliest to
    8·1 answer
  • 75 points
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!