Answer is adaptation. An organism develops a trait over time to help survive in its environment called an adaptation. You could take a giraffe for example. A long time ago giraffes actually had short necks, but now since their food is higher they soon developed a longer neck and this is what we now see in the present. This goes for any artic animal. Polar bears and seals have a white fur adaptation to help them blend in with their environment. A chameleon changes colors in order to hide from predators and sneak up on prey. These are all adaptations
Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Extensional stress. is your answer.
Answer:
The right solution is:
(a) 2.87 eV
(b) 1.4375 eV
Explanation:
Given:
Wavelength,
= 433 nm
Potential difference,
= 1.43 V
Now,
(a)
The energy of photon will be:
E = 
= 
or,
= 
= 
(b)
As we know,
⇒ 
By substituting the values, we get
⇒ 
⇒ 
or,
⇒ 
⇒ 
Answer:
KE = 1.75 J
Explanation:
given,
mass of ball, m₁ = 300 g = 0.3 Kg
mass of ball 2, m₂ = 600 g = 0.6 Kg
length of the rod = 40 cm = 0.4 m
Angular speed = 100 rpm= 
=10.47\ rad/s
now, finding the position of center of mass of the system
r₁ + r₂ = 0.4 m.....(1)
equating momentum about center of mass
m₁r₁ = m₂ r₂
0.3 x r₁ = 0.6 r₂
r₁ = 2 r₂
Putting value in equation 1
2 r₂ + r₂ = 0.4
r₂ = 0.4/3
r₁ = 0.8/3
now, calculation of rotational energy




KE = 1.75 J
the rotational kinetic energy is equal to 1.75 J