Answer:
Option D. AlCl₃, MgC₂
Explanation:
We need to dissociate all the salts, to determine the i. (Van't Hoff factor).
The salt who has the highest value, will be the better conductor of electricity
CsCl → Cs⁺ + Cl⁻ i = 2
CaCl → Ca²⁺ + Cl⁻ i = 2
CaS → Ca²⁺ + S⁻² i = 2
Li₂S → 2Li⁺ + S⁻² i = 3
KBr → K⁺ + Br⁻ i = 2
AlCl₃ → Al³⁺ + 3Cl⁻ i = 4
MgC₂ → Mg²⁺ + 2C⁻ i = 3
KI → K⁺ + I⁻ i = 2
K₂S → 2K⁺ + S⁻² i = 3
The biggest i, is in pair D.
Answer:
They are listed below
Explanation:
The 5 things that the periodic table includes are;
1. Name of the element
2. The symbol of the element
3. Atomic number of the element
4. Relative atomic mass
5. Electron configuration
Answer:
0.1056 mole
Explanation:
As Sally knows that the charge on the metal ion is n = +2

In that compartment ![$[M^{n+}]=[m^{2+}]=8.279 \ M$](https://tex.z-dn.net/?f=%24%5BM%5E%7Bn%2B%7D%5D%3D%5Bm%5E%7B2%2B%7D%5D%3D8.279%20%5C%20M%24)
The volume of the
taken in that compartment = 6.380 mL
So, the number of moles of 
= 52.82 m mol
= 0.05280 mol

But n = 2
Therefore, moles of
= 2 x moles of 
= 2 x 0.05282
= 0.1056 mole
You must remember that oxidation number of hydrogen in acids is always +1, oxidation number of oxygen in oxides & acids is always -2... metals has always oxidation number on plus!
group NO3 comes from HNO3...and oxidation number of whole acid group is always on minus and equal to the amount of hydrogen atoms in this acid... so oxidation number of NO3 = -1
we have 2 NO3 groups so 2*(-1) = -2 and that is the reason why oxidation number of Fe in this formula must be +2... because sum of all elements always gives 0!
Now we could count of oxidation number for nitrogen... we write HNO3 and start counting from right to left:
3*(-2) from oxygens + 1 from hydrogen = -5
so nitrogen must have +5 oxidation number... because sum all in formula must be 0.
Answer:
C2H3Br + O2 → CO2 + H2O + HBr
Explanation:
The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.
When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.
If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.