1. The hypothesis for this is experiment is that the 50:50 of methanol-water mixture will not turn to solid when the temperature reaches to -40°C.
2. The procedure for this is measuring equal volumes of water and methanol using the graduated cylinder. You can measure 100 mL of water and 100 mL of methanol using the graduated cylinder. Then, mix them in the beaker. Next, measure 200 mL of water, and another 200 mL of methanol. Don't mix them. Also, make a 60:40 mixture by measuring 120 mL of water and 80 mL of methanol, then mix them together. Place them all in the refrigerator at the same time. Record the time when they would freeze to solid.
3. The controls for this experiment are the 200 mL water alone, and the 200 mL methanol alone.
4. The independent variable in here is the time, while the dependent variable is the temperature of the mixtures.
5. If the hypothesis turns out to be true, then all the mixtures prepared should freeze and become solid after a certain period of time, with the exception of the 50:50 mixture. The 50:50 mixture should still remain as a liquid even when left overnight.
Metals are on the left side of the table and nonmetals are on the left with metalloids between them. And the noble gases are all in group 18 of the periodic table.
Answer:
37.1°C.
Explanation:
- Firstly, we need to calculate the amount of heat (Q) released through this reaction:
<em>∵ ΔHsoln = Q/n</em>
no. of moles (n) of NaOH = mass/molar mass = (2.5 g)/(40 g/mol) = 0.0625 mol.
<em>The negative sign of ΔHsoln indicates that the reaction is exothermic.</em>
∴ Q = (n)(ΔHsoln) = (0.0625 mol)(44.51 kJ/mol) = 2.78 kJ.
Q = m.c.ΔT,
where, Q is the amount of heat released to water (Q = 2781.87 J).
m is the mass of water (m = 55.0 g, suppose density of water = 1.0 g/mL).
c is the specific heat capacity of water (c = 4.18 J/g.°C).
ΔT is the difference in T (ΔT = final temperature - initial temperature = final temperature - 25°C).
∴ (2781.87 J) = (55.0 g)(4.18 J/g.°C)(final temperature - 25°C)
∴ (final temperature - 25°C) = (2781.87 J)/(55.0 g)(4.18 J/g.°C) = 12.1.
<em>∴ final temperature = 25°C + 12.1 = 37.1°C.</em>
You add the protons and the nuetrons together i think
Since the compound has 1.38 time that of oxygen gas at the same conditions of temperature and pressure, we have the relationship:
MW/MWoxygen = 1.38
MW = 44.16
Since there is water formed during the reaction, the formula of the compound must be:
XaHb
where a and b are the coefficients of each element.
If the compound reactions with oxygen forming water and an oxide of the element X, the combustion reaction must be:
XaHb + ((2a + (b/2))/2) O2 = a (XO2) + (b/2)(H2O)
Using dimensional analysis:
10 (1/44.16) (b/2 / 1) (18) = 16.3
Solving for b:
b = 8
The compound now is XaH8. Most probably, the compound is C3H8 since it has a molecular formula of 44 and it reacts with O2 to form water and CO2.