The different types of energy transfers are convection, conduction, and radiation.
I'm not too sure on the second one but thermodynamics relates thermal energy, kinetic energy, and potential energy. I'm basing this on the formulas of the laws of thermodynamics, but it could also be temperature, heat, or work.
Answer:
Time taken for car to stop = 0.89 seconds (Approx.)
Explanation:
Given:
Mass of car = 1100 kg
Speed of car = 15 m/s
Impact force = 185,000 N
Find:
Time taken for car to stop
Computation:
Change in momentum of car = M(v) - M(u)
Change in momentum of car = 1100(0) - 1100(15)
Change in momentum of car = -16,500
Time taken for car to stop = I Change in momentum of car I / Impact force
Time taken for car to stop = I-16,500I / 185,000
Time taken for car to stop = 0.89 seconds (Approx.)
Answer:
TO answer this question i need wave speed
Explanation:
Answer:
Velocity(v) = frequency(f) × wavelength
f = 0.3165
Wavelength = 2×length(L)
L = 157cm
Convert the length in centimetres to metre = 1.57m
v = 2×1.57 × 0.3165
v = 0.99m/s
Approx. 1m/s
Explanation:
The velocity of a wave is the product of its frequency and it's wavelength. The frequency is already known. The wavelength is the distance between two successive wave crests which is formed by sloshing water back and forth in the bath tub. Sloshing water to one end of the tub will produce a wave crest first at that end then the other completing a cycle. The wavelength will be twice the length of the bath tub as it is the distance that both crests are formed.
Wave crest is the highest point of a wave, and in this case is where the water rises to a high point in the bath tub