Answer:
Velocity of wave = 2322 m /sec
Explanation:
We know that, Velocity of wave v = n λ
Given, n
= 540 Hz, λ=4.3 m
, v = ?
Putting the value of n and λ
Velocity of wave = 540 x 4.3 = 2322 m /sec
Assuming that’s a right triangle, in this case A^2 + C^2 = B^2 … (16)^2 + C^2 = (25)^2 … C = 19.2 N
Answer:
= 625 nm
Explanation:
We now that for
for maximum intensity(bright fringe) d sinθ=nλ n=0,1,2,....
d= distance between the slits, λ= wavelength of incident ray
for small θ, sinθ≈tanθ= y/D where y is the distance on screen and D is the distance b/w screen and slits.
Given
d=1.19 mm, y=4.97 cm, and, n=10, D=9.47 m
applying formula
λ= (d*y)/(D*n)
putting values we get

on solving we get
= 625 nm
The potential energy of a 25 kg bicycle resting at the top of a hill 3 m high will be 735.75 J.
<h3>What is potential energy?</h3>
The potential energy is due to the virtue of the position and the height. The unit for the potential energy is the joule.
The potential energy is mainly depending upon the height of the object. when the cyclist is at the highest position, the height is maximum. Therefore, the potential energy is also maximum.
The potential energy is found as;
PE=mgh
PE=25 kg× 9.81 m/s² ×3 m
PE= 735.75 J.
Hence, the potential energy of a 25 kg bicycle resting at the top of a hill 3 m high will be 735.75 J.
To learn more about the potential energy, refer to the link;
brainly.com/question/24284560
#SPJ1
Sound waves are able to bounce off of, and sometimes pass through physical objects.