The acceleration of gravity on or near the Earth's surface is 9.8 m/s² downward.
Is that right ? I don't hear any objection, so I'll assume that it is.
That means that during every second that gravity is the only force on an object,
the object either gains 9.8m/s of downward speed, or it loses 9.8m/s of upward
speed. (The same thing.)
If the rock starts out going up at 14.2 m/s, and loses 9.8 m/s of upward speed
every second, it runs out of upward gas in (14.2/9.8) = <em>1.449 seconds</em> (rounded)
At that point, since it has no more upward speed, it can't go any higher. Right ?
(crickets . . .)
The correct answer would be B.) 98°c-102°c
Answer:
See explaination
Explanation:
Please kindly check attachment for the step by step solution of the given problem.
The attached file has a detailed solution of the given problem.
Answers are:
(1) KE = 1 kg m^2/s^2
(2) KE = 2 kg m^2/s^2
(3) KE = 3 kg m^2/s^2
(4) KE = 4 kg m^2/s^2
Explanation:
(1) Given mass = 0.125 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.125 * (16)
KE = 1 kg m^2/s^2
(2) Given mass = 0.250 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.250 * (16)
KE = 2 kg m^2/s^2
(3) Given mass = 0.375 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.375 * (16)
KE = 3 kg m^2/s^2
(4) Given mass = 0.500 kg
speed = 4 m/s
Since Kinetic energy = (1/2)*m*(v^2)
Plug in the values:
Hence:
KE = (1/2) * 0.5 * (16)
KE = 4 kg m^2/s^2