The problem gives us the value for the initial velocity of the race car, and the time it takes for the race car to come to a complete stop. The question however, proves to be tricky. The question states as follow: "what is the acceleration of the car after 12.0 seconds?" Since it was already established that the car has come to a halt in 12.0 seconds, therefore, the acceleration would have to be 0, as the car would not be moving at all.
I would assume gamma rays because they have the fastest moving partials out of all of them
<h2>
Answer: Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
</h2>
Explanation:
According to the law of universal gravitation:
Where:
is the module of the attraction force exerted between both planets
is the universal gravitation constant.
and
are the masses of both planets.
is the distance between both planets.
As we can see, the gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
In other words:
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.
Produces<span> V-shaped valley, steep sides Rapids
</span>
The process of making a heavy (single (a part of an atom) from two lighter than the original nuclei n<span>uclear is commonly known as the Nuclear Fission. It is called a nuclear reaction, due to it realizes a huge about of energy.</span>