Answer:

Explanation:
<u>Instant Acceleration</u>
The kinetic magnitudes are usually related as scalar or vector equations. By doing so, we are assuming the acceleration is constant over time. But when the acceleration is variable, the relations are in the form of calculus equations, specifically using derivatives and/or integrals.
Let f(t) be the distance traveled by an object as a function of the time t. The instant speed v(t) is defined as:

And the acceleration is

Or equivalently

The given height of a projectile is

Let's compute the speed

And the acceleration

It's a constant value regardless of the time t, thus

The Earth's gravity keeps the Moon orbiting us. It keeps changing the direction of the Moon's velocity. This means gravity makes the Moon accelerate all the time, even though its speed remains constant.
Answer: C
high; large
Explanation:
The wave energy is related to its amplitude and frequency.
The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.
Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.
Therefore, The waves with the MOST energy have high amplitudes and large
frequencies.
As you go from Radio waves across to Gamma eats : Wavelength decreases and frequency and energy increase.
The final position of the object after 2 s is 11 m.
Motion: This can be defined as the change in position of a body.
⇒ Formula:
- x = x₀+v₀t+1/2(at²)........................ Equation 1
⇒ Where:
- x = Final position of the object
- x₀ = Starting position
- v₀ = Starting velocity
- t = time
- a = acceleration
From the question,
⇒ Given:
- x₀ = 4.5 m/s
- t = 2 s
- x₀ = 2m
- a = 0 m/s²
⇒ Substitute these values into equation 1
- x = 2+(4.5×2)+1/2(0²×2)
- x = 2+9+0
- x = 11 m
Hence, The final position of the object after 2 s is 11 m
Learn more about motion here: brainly.com/question/15531840