Answer:
hshshrhwhebehwnejrjdjdhdhshdrhrhrhrhrhdhddhdhdhdhdhdhdhdhdg
Explanation:
262+482726+47625twyeu&2736
<h2>Explanation:</h2><h3>3. </h3>
When light bounces back, it is <em>reflected</em>. (That's why you see your <em>reflection</em> in a mirror.) When light is bent from the path it is taking, it is <em>refracted</em>. The only answer choice that makes correct use of these terms is the third choice:
- Part of the ray is <em>refracted</em> into ray B; part of the ray is <em>reflected</em> as ray R.
_____
<h3>4.</h3>
The index of refraction is the ratio of the sine of the angle of incidence to the sine of the angle of refraction. Both angles are measured from the normal to the surface. The angle of refraction here is 12.5° less than the angle of incidence, 44°, so is 31.5°. Then the index of refraction of the medium is ...
n = sin(44°)/sin(31.5°) = 0.69466/0.52250 = 1.3299 ≈ 1.33
- none of the offered choices is correct. The closest is 1.34.
Answer:
Explanation:
Area of electrodes, A = 2 cm x 2 cm = 4 cm²
Separation between electrodes, d = 1 mm
Voltage, V = 9 V
(a)
Let C is the capacitance between the electrodes


C = 3.54 x 10^-12 F
Let q be the charge on each of the electrode
q = C x V
q = 3.54 x 10^-12 x 9 = 3.2 x 10^-11 C
(b)
As, the battery is disconnected the charge on the electrodes remains same.
(c)
As the battery is connected the voltage is same.
capacitance is change.
As the distance is doubled, the capacitance becomes half and the charge is also halved. q' = q/2 = 1.6 x 10^-11 C