Answer:
The electric field value is 240 N/C
Explanation:
Given that,
Distance = 5.0 mm
Potential difference = 1.2 V
We need to calculate the electric field value
Using formula of potential difference
Where, E = electric field
V = potential difference
d = distance
Put the value into the formula
Hence, The electric field value is 240 N/C
Diagram 4 is the correct answer.
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system
Energy decreases as it moves uptrophic levels because energy is lost as metabolic heat when the organisms from one trophic level are consumed by organisms from the next level.Trophic level transfer efficiency (TLTE) measures the amount of energy that is transferred between trophic levels.