"Energy and Momentum" is always conserved in an inelastic condition
Hope this helps!
Explanation:
S=(V^2-U^2)/2a a=g (gravity) a=10
=(0^2-25^2/2*(-10)
=625/20
=31.25m
Answer:
3.69 m/s
Explanation:
Forces :
mgsin Θ - mumgcosΘ = ma
g x sinΘ - mu x g x cosΘ = a
9.8 x sin 21 - 0.53 x 9.8 x cos 21 = a
a = -1.337 m/s²
so you have final velocity = 0 m/s
initial velocity = ? m/s
Given d = 5.1 m
By kinematics
vf² = vo² + 2ad
0 = vo² + 2 x -1.337*5.1
vo = 3.69 m/s
Answer:
a= 17.877 m/s² : Magnitude of the acceleration of the flea
β = 88.21° : Direction of the acceleration of the flea
Explanation:
Conceptual analysis
We apply Newton's second law:
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Problem development
Look at the flea free body diagram in the attached graphic
The acceleration is presented in the direction of the resultant force (R) applied over the flea .


R= 10.905*10⁻⁶ N
We apply the formula (1) to calculate the magnitude of the acceleration of the flea
∑F = m*a m = 6.1 * 10⁻⁷ kg
R = m*a
a= R/m
a= (10.905*10⁻⁶) / (6.1 * 10⁻⁷ )
a= 17.877 m/s²
β: Direction and magnitude of the acceleration of the flea


β = 88.21°