Answer:
The acceleration is 2 m/s2.
Explanation:
We calculate the acceleration (a), with the data of mass (m) and force (F), through the formula:
F = m x a ---> a= F/m
a = 40 N/20 kg <em> 1N= 1 kg x m/s2</em>
a= 40 kgx m/s2/ 20 kg
<em>a= 2 m/s2</em>
Look at the third one i think its the answer
(a)
consider the motion of the tennis ball. lets assume the velocity of the tennis ball going towards the racket as positive and velocity of tennis ball going away from the racket as negative.
m = mass of the tennis ball = 60 g = 0.060 kg
v₀ = initial velocity of the tennis ball before being hit by racket = 20 m/s
v = final velocity of the tennis ball after being hit by racket = - 39 m/s
ΔP = change in momentum of the ball
change in momentum of the ball is given as
ΔP = m (v - v₀)
inserting the above values
ΔP = (0.060) (- 39 - 20)
ΔP = - 3.54 kgm/s
hence , magnitude of change in momentum : 3.54 kgm/s
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,
1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.
It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.
Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.
A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.
So, in analyzing the four choices given, we look for low P and high T.
A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.
B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.
We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.