"The total distance traveled divided by the time it takes to travel the distance"
That's actually a pretty good definition of average speed. <em>(A)</em>
400m in 32sec: (400/32)>12.5meters per second>
(12.5)(60)(60)(1/1000)=45km per hour
Constant speed would mean that the two forces are equivalent
Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg
Answer:
0.24 kgm²
Explanation:
= length of the bat = 81.3 cm = 0.813 m
= mass of the bat = 0.96 kg
= distance of the center of mass of bat from the axis of rotation = 55.9 cm = 0.559 m
= Period of oscillation = 1.35 sec
= moment of inertia of the bat
Period of oscillation is given as


= 0.24 kgm²
The correct answer to the question above is the capture theory. The capture theory proposes that the moon was a passing asteroid pulled into the orbit by the Earth's gravity. It says that the moon was originally orbiting the sun, not the Earth.