Answer:
Both Technician A and B are correct.
Explanation: Both are correct, but keep note that different color coolants leave different color stains.
Since the armature is wave wound, the magnetic flux per pole is 0.0274 Weber.
<u>Given the following data:</u>
- Number of armature conductors = 144 slots
- Number of poles = 4 poles
- Number of parallel paths = 2
To find the magnetic flux per pole:
Mathematically, the emf generated by a DC generator is given by the formula;
× 
<u>Where:</u>
- E is the electromotive force in the DC generator.
- Z is the total number of armature conductors.
- N is the speed or armature rotation in r.p.m.
- P is the number of poles.
- A is the number of parallel paths in armature.
First of all, we would determine the total number of armature conductors:
×
× 
Z = 864
Substituting the given parameters into the formula, we have;
× 
× 
<em>Magnetic flux </em><em>=</em><em> 0.0274 Weber.</em>
Therefore, the magnetic flux per pole is 0.0274 Weber.
Read more: brainly.com/question/15449812?referrer=searchResults
Answer:
7.94 ft^3/ s.
Explanation:
So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate.
Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.
Therefore; kp/ks = 1/6.
Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.
Reynolds scaling==> Hp/ 700 = (1/6)^2.5.
= 7.94 ft^3/ s
It is habahi Yw with yuuuuuy I am a little more confused about
Less, if it’s too big: hard to control and maneuverability for shooting wouldn’t be that good. a smaller wheelchair allows for faster movement and control, along with easier shooting and upper body movement