1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Angelina_Jolie [31]
3 years ago
12

11) (10 points) A large valve is to be used to control water supply in large conduits. Model tests are to be done to determine h

ow the valve will operate. Both the model and prototype will use water as the fluid. The model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve). If the prototype flow rate is to be 700 ft3 /s, determine the model flow rate. Use Reynolds scaling for the velocity.
Engineering
1 answer:
IrinaVladis [17]3 years ago
7 0

Answer:

7.94 ft^3/ s.

Explanation:

So, we are given that the '''model will be 1/6 scale (the modeled valve will be 1/6 the size of the prototype valve)'' and the prototype flow rate is to be 700 ft3 /s. Then, we are asked to look for or calculate or determine the value for the model flow rate.

Note that we are to use Reynolds scaling for the velocity as par the instruction from the question above.

Therefore; kp/ks = 1/6.

Hs= 700 ft3 /s and the formula for the Reynolds scaling => Hp/Hs = (kp/ks)^2.5.

Reynolds scaling==> Hp/ 700 = (1/6)^2.5.

= 7.94 ft^3/ s

You might be interested in
A steam pipe passes through a chemical plant, where wind passes in cross-flow over the outside of the pipe. The steam is saturat
valina [46]

Answer:

a) the rate of heat transfer from the pipe to the air is 23.866 watts

b) YES, the rate of heat transfer changes to 3518.61 watt

Explanation:

Given that:

steam is saturated at 17.90 bar.

the pipe is stainless steel and has an outside diameter of 6.75 cm

length = 34.7 m

Air flows over the pipe at 7.6 m/s

Bulk fluid temperature of 27°C

we know that

hD/k = 0.028 (Re)^0.8 (Pr)^0.33

Outside diameter of pipe = 6.75 cm

length of the pipe = 34.7 m

velocity of air = 7.6 m/s

Cp of air = 1.005 kJ/Kgk

viscosity of air = 1.81 × 10⁻⁵ kg/(m.sec)

thermal conductivity of air = 2.624 × 10⁻⁵ kw/m.k

so as

hD/k = 0.028 (Re)^0.8 (Pr)^0.33

hD/k = 0.028 (Dvp / u)^0.8 (Cpu / k)^0.33

(h × 0.0675 / 2.624 × 10⁻⁵) = (0.028 ([0.0675 × 7.6 × 1.225] / [1.81 ×10⁻⁵])^0.8) (((1.005 × 1.81 × 10⁻⁵) / (2.624 × 10⁻⁵))^0.33))

h = 0.0414 w/m².k

a)

Now to find the rate of heat transfer Q

Q = hAΔT

Q = 0.0414 × (2π × 0.03375 × 34.7) × (105.383 - 27)

Q = 23.866 watts

therefore the rate of heat transfer from the pipe to the air is 23.866 watts

b)

Now the flow direction changes to parallel flow, then

(h × 0.0675 / 2.624 × 10⁻⁵) = (0.028 ([34.7 × 7.6 × 1.225] / [1.81 ×10⁻⁵])^0.8) (((1.005 × 1.81 × 10⁻⁵) / (2.624 × 10⁻⁵))^0.33))

h = 6.1036 w/m².k

so from the steam table, saturated steam at 17.70 bar, temperature of steam will be 105.383°C

so to find the rate of heat transfer Q

Q = hAΔT

Q = 6.1036 × (2π × 0.03375 × 34.7) × (105.383 - 27)

Q = 3518.61 watt

Therefore the rate of heat transfer changes to 3518.61 watt

4 0
3 years ago
python Write a program that takes a date as input and outputs the date's season. The input is a string to represent the month an
kupik [55]

Answer:

month = input("Input the month (e.g. January, February etc.): ")

day = int(input("Input the day: "))

if month in ('January', 'February', 'March'):

season = 'winter'

elif month in ('April', 'May', 'June'):

season = 'spring'

elif month in ('July', 'August', 'September'):

season = 'summer'

else:

season = 'autumn'

if (month == 'March') and (day > 19):

season = 'spring'

elif (month == 'June') and (day > 20):

season = 'summer'

elif (month == 'September') and (day > 21):

season = 'autumn'

elif (month == 'December') and (day > 20):

season = 'winter'

print("Season is",season)

Explanation:

4 0
3 years ago
Why is it reasonable to say that no system is 100% efficient?​
Virty [35]

Generally, frictional losses are more predominant for the machines being not 100% efficient. This friction leads to the loss of energy in the form of heat, into the surroundings. Some of the supplied energy may be utilised to change the entropy (measure of randomness of the particles) of the system.

5 0
3 years ago
Is an example of an electrical device.
Yuki888 [10]
I think that it is all of the above
5 0
3 years ago
Read 2 more answers
A river has an average rate of water flow of 59.6 M3/s. This river has three tributaries, tributary A, B and C, which account fo
Fiesta28 [93]

Answer:

50421.6 m³

Explanation:

The river has an average rate of water flow of 59.6 m³/s.

Tributary B accounts for 47% of the rate of water flow. Therefore the rate of water flow through tributary B is:

Flow rate of water through tributary B = 47% of 59.6 m³/s = 0.47 * 59.6 m³/s = 28.012 m³/s

The volume of water that has been discharged through tributary B = Flow rate of water through tributary B * time taken

time = 30 minutes = 30 minutes * 60 seconds / minute = 1800 seconds

The volume of water that has been discharged through tributary B in 30 seconds = 28.012 m³/s * 1800 seconds = 50421.6 m³

3 0
3 years ago
Other questions:
  • Calculate the maximum internal crack length allowable for a 7075-T651 aluminum alloy component that is loaded to a stress one-ha
    15·1 answer
  • In a tensile test on a steel specimen, true strain is 0.171 at a stress of 263.8 MPa. When true stress is 346.2 MPa, true strain
    7·1 answer
  • Which of the following scenarios describes someone who is a materials engineer?
    13·1 answer
  • Express the unsteady angular momentum equation in vector form for a control volume that has a constant moment of inertia I, no e
    9·1 answer
  • Hiiiiiiiii<br> jhajwjne f f g. g g tnnjzjnsnsnend f najjwne d f nskiaksjsjsjksm
    5·1 answer
  • What is this i dont understand this at all
    9·1 answer
  • TP-6 What should you do when fueling an outboard boat with a portable tank?
    12·1 answer
  • Linus is using a calculator to multiply 5,426 and 30. He enters 5,426 x 300 by mistake. What can Linus do to correct his mistake
    7·1 answer
  • Drag each label to the correct location on the table. Match to identify permanent and temporary structures.
    15·1 answer
  • What do u mean by double entry bookkeeping system?<br>u fellas don't spam pls​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!