Yes. Kinetic energy is a form of mechanical energy and friction will turn that kinetic energy into heat.
Answer: 5 gm/cc
Explanation:
200 gm/40 cc
= 5 gm/cc
<h2>
Option 2 is the correct answer.</h2>
Explanation:
Elastic collision means kinetic energy and momentum are conserved.
Let the mass of object be m and M.
Initial velocity object 1 be u₁, object 2 be u₂
Final velocity object 1 be v₁, object 2 be v₂
Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s
Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M
Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J
Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M
We have
Initial momentum = Final momentum
24 = 3v₁ + 6M
v₁ + 2M = 8
v₁ = 8 - 2M
Initial kinetic energy = Final kinetic energy
96 = 1.5 v₁² + 18 M
v₁² + 12 M = 64
Substituting v₁ = 8 - 2M
(8 - 2M)² + 12 M = 64
64 - 32M + 4M² + 12 M = 64
4M² = 20 M
M = 5 kg
Option 2 is the correct answer.
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png
Solution:
We need to find the magnitude of the resultant on both x- and y-axis.
x-axis) The resultant on the x-axis is

in the positive direction.
y-axis) The resultant on the y-axis is

in the positive direction.
Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using

from which we find
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:
