The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
Answer:
D. the ability to exercise for longer periods of time
Explanation:
For example, when someone does endurance training, they are stretching their body's ability to do a certain exercise for longer times as opposed to increasing strength.
This should help
there always needs to be 2 electrons in the first shell then 8 electrons in each shell and continue till you not have any more number of electron left
Here it is an application of Newton's III law
as we know by Newton's III law that every action has equal and opposite reaction
So here as we know that two boys jumps off the boat with different forces
from front side of the boat the boy jumps off with force 45 N which means as per Newton's III law if boy has a force of 45 N in forward direction then he must apply a reaction force on the boat in reverse direction of same magnitude
So boat must have an opposite force on front end with magnitude 45 N
Now similar way we can say
from back side of the boat the boy jumps off with force 60 N which means as per Newton's III law if boy has a force of 60 N in backward direction then he must apply a reaction force on the boat in reverse direction of same magnitude
So boat must have an opposite force on front end with magnitude 60 N
So here net force due to both jump on the boat is given by
so boat will have net force F = 15 N in forward direction due to both jumps
In order to find the final velocity of the skier and the trash can lid, we may apply the principle of conservation of momentum, which states that the total momentum of a system remains constant. Mathematically, in this case:
m₁v₁ + m₂v₂ = m₃v₃
Where m₃ and v₃ are the combined mass and velocity.
75*3 + 10*2 = (75 + 10)*v₃
v₃ = 2.88 m/s
The final velocity is 2.88 m/s