Gasoline is predominantly octane, C8H18. Something like soap would be a great homogenizer. Soap is composed of a long hydrocarbon chain with a tiny, highly polar tip on one end. Usually, the soap is the anion of a salt, NaX. This allows the polar end of the soap to stick to water, while the nonpolar end sticks to the oil.


Glucose is carbohydrate and a simple sugar that is very important to the human body.
Energy is produced for the cells in the body through the process of metabolism which oxidizes glucose to water, carbon dioxide, and some nitrogen compounds.
The general chemical reaction equation for metabolism is:
C6H12O6 + 6O2 ---> 6CO2 + 6H2O
Answer:
Four times the original amount if only one orange was used
Explanation:
We can assume that the oranges all have equal voltages. Connecting them in series will have an increasing effect on the voltage delivered. In our case, this will produce 4 times the voltage of the circuit when only one orange is used.
Whenever simple cells are connected in series, the voltages of the individual cells are added up to form the voltage of the whole circuit.
Let us assume that the voltage of each of the oranges is approximately 0.9 volts. The Voltage produced when the 4 oranges are joined in series is 0.9 + 0.9 + 0.9 + 0.9 = 3.6 volts
Answer:
0.0344 moles and 1.93g.
Explanation:
Molarity is defined as the ratio between moles of a solute (In this case, KOH), and the volume. With molarity and volume we can solve the moles of solute. With moles of solute we can find mass of the solute as follows:
<em>Moles KOH:</em>
15.2mL = 0.0152L * (2.26mol / L) = 0.0344moles
<em>Mass KOH:</em>
0.0344 moles * (56.11g/mol) = 1.93g of KOH