Answer:
H₂
Explanation:
To solve this question we must find, as first, find the molar mass of the homonuclear diatomic gas using Graham's law. With the molar mass we can identify this gas
<em>Graham's law:</em>

<em>Where V is the speed of the gases and m the molar mass of those:</em>
<em>As Va is 3.98 times Vb (And mB is molar mass of oxygen gas = 32g/mol)</em>

15.84 = 32g/mol / mA
mA = 2.02g/mol
As is a homonuclear diatomic gas, the molar mass of the atom is 1.01g/mol. Thus, the gas is:
<h3>H₂</h3>
molecules collide more frequently.
Chemical reaction mechanisms are based in the collision of molecules with certaing level of energy. More collisions implies grater probablity of reaction.
Answer:
CH3
|
CH3- C H -CH2-CH2- CH - CH2-CH2-CH3
|
CH
/ \
CH3 CH3
Explanation:
Octan
C-C-C-C-C-C-C-C
Metyl
CH3 -
Isopropyl
CH3
/
- CH
\
CH3
2-metil-5-isopropiloctan
CH3
|
CH3- C H -CH2-CH2- CH - CH2-CH2-CH3
|
CH
/ \
CH3 CH3
Answer: i iii i i i ii i i ir r
q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q
These ions are disjoint by the charge on the ion into four dissimilar tables and listed alphabetically within each table. Each polyatomic ion, has it called, chemical, formula, two dimensional drawing, and three dimensional representation are given.
The three dimensional buildings are drawn as CPK models. CPK structures represent the atoms as sphere, where the radius of the sphere is equal to the van der waals radius of the atom; these buildings give a measure up the volume of the polyatomic atom.