Answer:
h = 51020.40 meters
Explanation:
Speed of the rifle, v = 1000 m/s
Let h is the height gained by the bullet. It can be calculated using the conservation of energy as :


h = 51020.40 meters
So, the bullet will get up to a height of 51020.40 meters. Hence, this is the required solution.
Gravity pulls objects down to the earth
Given the equation for the Speed of a Satellite
v = SqRt{Gravitational Constant}{Mass of Earth} divided by the radius given in your problem
we have:
(square root whole term on right side)
v = G Me
———
r
so. (6.67x10^-11)(5.97x10^24)
___________________
(8.0x10^6)
v = 7055 m/s (which is reasonable)
so utilize the Kinetic Energy Formula
KE = 1/2mv^2
KE = 1/2(200)(7055)^2
KE = 4.977x10^9 J
Answer:
a) 0.462 m/s^2
b) 31.5 rad/s
c) 381 rad
d) 135m
Explanation:
the linear acceleration is given by:

the angular speed is given by:

to calculate how many radians have the wheel turned we need the apply the following formula:

the distance is given by:


There are many porperties. You can use Altitude, Temperature, Pressure and Density, but the best one is temperature. The resaon for that is that based on the temperature changes then the athmosphere can be broken into four major layers. Remember that the layers are the following: <span>the </span>troposphere,the<span> </span>stratosphere, <span>the </span>mesosphere<span>, and the</span>thermosphere<span>.</span>