1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
3 years ago
15

Atoms are happy (they will not readily react with other elements) when they have a full outside ring of

Physics
1 answer:
Len [333]3 years ago
7 0

Answer: TRUE

Explanation:

Atoms are happy when they will not react with other elements while having a full outside ring of electrons because this makes them to be noble.

A stable atom possesses full outside ring of electrons while unstable one does not. So, they are happy also because of stability.

You might be interested in
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
4 years ago
In a fission experiment observed by Hahn and Strassman, uranium-235 was bombarded by neutrons. The products of this ission react
wlad13 [49]

Answer:

helium-4 (90%) or tritium (7%).

Explanation:

hope it helped u buddy

7 0
4 years ago
Someone help I'm stuck on question 8 and 12
Kaylis [27]
Sippen lein an hr later is theanswer to both 

4 0
4 years ago
Describe the relationship between kinetic energy and speed and give an example of how changing and object speed would affect its
Andreas93 [3]

Answer:

I'm not sure

Explanation:

I have had that question to Uchida c r go crew in to go be

6 0
3 years ago
A boat is traveling at 80 km/hr. How many hours will it take for the boat to cover a distance of 115 km?
miskamm [114]

Answer:

Explanation:

Givens

d = 115 km

r = 80 km/hr

t = ?

Equation

d = r*T

Solution

115 = 80 * t    Divide by 80

115/80 = t

t = 1.4375 hours.

3 0
3 years ago
Other questions:
  • What is the formula for a simple sugar?
    15·2 answers
  • A wildebeest runs with an average speed of 4.0\,\dfrac{\text m}{\text s}4.0 s m ​ 4, point, 0, start fraction, start text, m, en
    8·1 answer
  • The basic unit for mass is the<br> a. gram.<br> c. cubic meter.<br> b. metric ton.<br> d. meter.
    6·2 answers
  • A wheelbarrow is a good example of a second-class lever. True or False
    12·1 answer
  • Which is the equivalent resistance of the circuit<br><br> shown below?
    11·1 answer
  • What is the acceleration of a baseball that has a final velocity of 15.0 m/s when it crosses the plate 2.0 seconds after leaving
    12·1 answer
  • State the relation between acceleration and momentum​
    13·1 answer
  • Vector A = 50 m,<br> 20°. Vector -3A would be equal to
    9·1 answer
  • When Elements neutral atom contains 5 neutrons 4 electrons and 4 protons
    9·2 answers
  • Express force in terms of base units​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!