Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3
The answer is c
Distance/speed=time
Therefore 4000/500=8
Answer:
It takes 266 seconds to melt the ice.
Explanation:
Given data
- Power of the microwave oven (P): 125 Watt
- Heat supplied to the ice (Q): 33,200 Joule
- Time for the melting (t): to be determined
In order to determine the time required to melt the ice, we can use the following expression.
P = Q/t
t = Q / P = 33,200 J/ 125 W = 266 s
It takes 266 seconds to melt the ice.
Answer:
B. positive; negative.
Explanation:
From the viewpoint of Principle of Energy Conservation and Work-Energy Theorem, we notice that gravity represents a conservative force, associated with gravitational potential energy, whereas air resistance is a non-conservative force, associated with dissipated work. Therefore, the work done by gravity is positive and work done by air resistance is negative. Therefore, the correct answer is B.