3.60 A = 3.60 coulombs of charge per second
(3.60 Coul/sec) x (15.3 sec) = 55.08 coulombs of charge
1 coulomb of charge is carried by 6.25 x 10^18 electrons
Number of electrons =
(55.08 Coul) x (6.25 x 10^18 e/coul) = <em>3.4425 x 10^20 electrons</em>
Answer:
it equals 53 miles per hour
The maximum force that the athlete exerts on the bag is NEGATIVE 1,500 N and in the OPPOSITE DIRECTION of the force that the bag exerts on the athlete.
<h3>Newton's third law of motion</h3>
Newton's third law of motion states action and reaction are equal and opposite. That is the force applied to an object is equal in magnitude to force experienced by the object but in opposite direction.
From the given question, when the bag exert a certain on the athlete, the athlete also exerts similar force to the bag but in opposite direction.
Thus, the complete sentence is as follows;
The maximum force that the athlete exerts on the bag is NEGATIVE 1,500 N and in the OPPOSITE DIRECTION of the force that the bag exerts on the athlete.
Learn more about Newton's third law of motion here: brainly.com/question/25998091
#SPJ1
The abiotic community of the ecosystem or the nonliving objects in the earth's biosphere influences the survival, growth and development of the organism. They provide basic mmaterials to support life by the biogeochemical processes which is composed of many biological and environmental cycles which profoundly has factored the intiation and continuation of life on earth. They also provide the basic materials to support life by the undergoing process which is also initiated by the living creatures or the biotic society of the ecosystem.
Answer:
Option C.
Impulse = mass × change in velocity
Explanation:
Impulse is defined by the following the following formula:
Impulse = force (F) × time (t)
Impulse = Ft
From Newton's second law of motion,
Force = change in momentum /time
Cross multiply
Force × time = change in momentum
Recall:
Impulse = Force × time
Thus,
Impulse = change in momentum
Recall:
Momentum = mass x velocity
Momentum = mv
Chang in momentum = mass × change in velocity
Change in momentum = mΔv
Thus,
Impulse = change in momentum
Impulse = mass × change in velocity