Hydrogen and Helium cannot bond together. Put aside the inertness of helium (or all noble gases), bond formation is only favored when the final state of the two elements is more stable than their initial state. ... Helium compounds has some predictions though none of them contain only those two elements.
Since the molecules of a gas are constantly in motion, moving and hitting other gas molecules in all directions of the enclosed container, the molecules transfer a portion of energy through the interaction of other gas particles as they hit, but then bounce off.
Answer:
1.15 atm
Explanation:
According to Dalton's law of partial pressures, the total pressure is the sum of all the partial pressures of the gases present in the mixture.
Therefore we have:
Total pressure = partial pressure of carbon monoxide + partial pressure of oxygen + partial pressure of carbon dioxide
We were given the following:
Total pressure = 2.45 atm
Pressure of oxygen = 0.65 atm
Pressure of carbon monoxide = x
Pressure of carbon dioxide = 0.65 atm
Therefore:
2.45 = x + 0.65 + 0.65
2.45 = x + 1.3
x = 2.45 - 1.3
x = 1.15 atm
Answer:
Zr (Zirconium)
Explanation:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d2
Molar mass is the mass of 1 mol of substance.
Molar masses of compounds can be calculated by the sum of the products of molar masses of individual atoms by number of corresponding individual atoms.
Compound formula is C₉H₈O₄
the molar masses of the atoms making up the compound
C - 12 g/mol x 9 C = 108
H - 1 g/mol x 8 H = 8
O - 16 g/mol x 4 O = 64
therefore molar mass of aspirin = 108 + 8 + 64 = 180 g/mol
answer is 3.180