The answer would be solubility
Answer:
A nuclear winter is a climatic phenomenon that would follow the detonation of several atomic bombs in the event that a nuclear war broke out. These bombs would cause firestorms that would raise smoke, dust and particles into the atmosphere that would end up in the stratosphere and eventually spread throughout the globe.
Explanation:
That idea is far fetched, because even though those same particles would absorb sunlight, it would raise the temperature in the stratosphere and cause a decrease in temperature in the Earth's layer. Unable to seep the sun's rays, many plant species would die and this would affect the entire food chain.
In addition, that temperature rise in the stratosphere would destroy part of the ozone layer, causing greater exposure to ultraviolet rays. This would end up affecting health and further damaging plant species.
Time taken by the bowling ball to reach its highest point= 0.214 s
initial velocity= Vi=2.1 m/s
Final velocity= Vf=0 as the velocity at the highest point is zero.
acceleration= g= -9.8 m/s²
using the kinematic equation Vf= Vi + at
0= 2.1 + (-9.8)t
t= -2.1/-9.8
t=0.214 s
Thus the time taken by the bowling ball to reach its highest point is 0.214 s
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz