Wherever a river loses energy
Answer:
Partial Pressure of F₂ = 1.30 atm
Partial pressure of Cl₂ = 0.70 atm
Explanation:
Partial pressure for gases are given by Daltons law.
Total pressure of a gas mixture = sum of the partial pressures of individual gases
Pt = P(f₂) + P(cl₂)
Partial pressure = mole fraction × total pressure
Let the mass of each gas present be m
Number of moles of F₂ = m/38 (molar mass of fluorine = 38 g/Lol
Number of moles of Cl₂ = m/71 (molar mass of Cl₂)
Mole fraction of F₂ = (m/38)/((m/38) + (m/71)) = 0.65
Mole fraction of Cl₂ = (m/71)/((m/38) + (m/71)) = 0.35 or just 1 - 0.65 = 0.35
Partial Pressure of F₂ = 0.65 × 2 = 1.30 atm
Partial pressure of Cl₂ = 0.35 × 2 = 0.70 atm
Answer:
Time, t = 0.23 seconds
Explanation:
It is given that,
Initial speed of the ranger, u = 52 km/h = 14.44 m/s
Final speed of the ranger, v = 0 (as brakes are applied)
Acceleration of the ranger, 
Distance between deer and the vehicle, d = 87 m
Let d' is the distance covered by the deer so that it comes top rest. So,


d' = 26.06 m
Distance between the point where the deer stops and the vehicle is :
D=d-d'
D=87 - 26.06 = 60.94 m
Let t is the maximum reaction time allowed if the ranger is to avoid hitting the deer. It can be calculated as :


t = 0.23 seconds
Hence, this is the required solution.
Answer:
E=1824.81 V/m
Explanation:
Given that
Voltage difference = 5 V
Distance ,D= 3 mm
θ = 24°
As we know that electric filed given as

Given that D is 24° with respect to the perpendicular to the electrodes.So we have to take cos component of D.
d= D cosθ
d= 3 cos24°
d = 2.74 mm
So


E=1824.81 V/m
The statement '<span>The more particles a substance has at a given temperature, the more thermal energy it has' is true. </span><span>The
kinetic molecular theory of gases has three main laws and one of them is the
average kinetic energy of the particles in a gas. The average kinetic energy of
the gas particles is the behavior and movement it does in the surroundings. It
is directly proportional to temperature wherein if you increase the
temperature, the kinetic energy of a particle also increases. It will also
decrease its movement or its kinetic energy if the temperature lowers. </span>