Answer:
a) The mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle is 23.6 cm².
Explanation:
a) The mass flow rate through the nozzle can be calculated with the following equation:

Where:
: is the initial velocity = 20 m/s
: is the inlet area of the nozzle = 60 cm²
: is the density of entrance = 2.21 kg/m³
Hence, the mass flow rate through the nozzle is 0.27 kg/s.
b) The exit area of the nozzle can be found with the Continuity equation:



Therefore, the exit area of the nozzle is 23.6 cm².
I hope it helps you!
Merkel cells are the sensory receptors for touch.
Information I learned from history class Education in the 1950's expanded from previous decades. They no longer focused purely on reading, writing and arithmetic. History and science became a main part of the cirriculum. Also, enrollment skyrocketed as the baby-boomers began enrolling in elementary school. One interesting thing that categorized this generation was the presence of fallout tests. Schools would require the students to go through a fake atomic bomb attack in which they would hide under their desks (which was completely pointless in protecting them from radiation, it was more of an emotional security for the parents and teachers, but scared the hell out of the students). Socially, children were taught to conform and to be normal. Standing out or questioning authority was bad. Sex was taught, though minimally. They explained the penis and vagina. Sexually transmitted diseases were focused on greatly so as to "scare" the students out of premarital sex.
Well first of all, I think the students may have been correct.
If they didn't use distilled water, and if it wasn't exactly at
standard temperature, then the mass of 25.0 mL could
very well be 25.4 grams. We don't know that there was
any 'error' in their measurement at all.
But the question says there was, so we'll do the math:
The 'error' was (25.4 - 25.0) = +0.4 gram
As a fraction of the 'real' value, the error was
+0.4 / 25.0 = +0.016 .
To change a decimal to a percent, move the
decimal point two places that way ===> .
+ 0.016 = +1.6 % .
Their measurement was 1.6% too high.
Let's not call it an 'error'. Let's just call it a 'discrepancy'
between the measured value and the 'accepted' value. OK ?