Contact and non contact forces are big factors to consider
in designing of different modes of transportation because this factors are
resistances for the mode of transportation. These contact and non- contact
forces should be minimized in order for the energy requirement to be also
minimum. But not the extent of risking the safety, for example a non contact
force is the wieght, the should be optimum, safety of the design should not be
compromised just to reduce weight, just like by removing essential parts,
support just to remove weight is not good.
Answer:
15.88m/s
Explanation:
At the top of the roller coaster you will have three forces acting on the roller-coaster. See the image below. Fc is the centripetal force (for an object in circular motion), Fg is the gravitational force, and Fn is the normal force. To achieve the minimum speed we assume the roller-coaster is barely touching the vertical loop and so the normal force is zero. This leaves two acting forces.

The frictional torque exerted on the platform by the axle as the platform rotates will be;
![\rm T_f \theta =\frac{1}{2} I [\omega^2-\omega_0^2]](https://tex.z-dn.net/?f=%5Crm%20T_f%20%5Ctheta%20%3D%5Cfrac%7B1%7D%7B2%7D%20I%20%5B%5Comega%5E2-%5Comega_0%5E2%5D)
<h3>What is torque?</h3>
Torque is the force's twisting action about the axis of rotation. Torque is the term used to describe the instant of force. It is the rotational equivalent of force. Torque is a force that acts in a turn or twist.
The amount of torque is equal to force multiplied by the perpendicular distance between the point of application of force and the axis of rotation.
Work done by the frictional torque = Change in the rotational kinetic energy of the wheel
![\rm T_f \theta =\frac{1}{2} I [\omega^2-\omega_0^2]](https://tex.z-dn.net/?f=%5Crm%20T_f%20%5Ctheta%20%3D%5Cfrac%7B1%7D%7B2%7D%20I%20%5B%5Comega%5E2-%5Comega_0%5E2%5D)
Where,
is the frictional torque
is the final angular velocity
is the initial angular velocity
is the angular displacement
Hence, the frictional torque exerted on the platform by the axle as the platform rotates will be;
![\rm T_f \theta =\frac{1}{2} I [\omega^2-\omega_0^2]](https://tex.z-dn.net/?f=%5Crm%20T_f%20%5Ctheta%20%3D%5Cfrac%7B1%7D%7B2%7D%20I%20%5B%5Comega%5E2-%5Comega_0%5E2%5D)
To learn more about the torque, refer to the link;
brainly.com/question/6855614
#SPJ1
Answer:
6m/s^2
Explanation: this is because when the object is mass is increasing the object's acceleration will divide into two.