C) A crack in earth's crust where movement occurs. An example of this is the San Andreas Fault.
A) is repulsion
B) continental crust (lighter crust)
D) Hotspot
Explanation:
Forgive me If I am wrong, it's been a while since I've studied Torque.
The formula for the angular momentum is
momentum= I*w.
We can also write I*W as 1/2MR^2 * W so the extra mass coming from the block of clay would most likely cause the angular momentum to increase from the amount it was before.
Well simple the warm water then replaces the cold current that sinks to the ocean floor.
Answer:
- <u>First choice:</u><u><em> Because the mass of the cannon ball is much less than the cannon</em></u>
Explanation:
Indeed, <em>Newton's Third Law</em>, i.e. the action-reaction law, states that any action (force) will have a reaction (force) of same magnitude but opposite direction.
That means that when a cannon goes off the cannon ball exerts a force on the cannon and the cannon exerts the same force back on the cannon ball.
To find out how much the cannon ball and the cannon itsel move, you must consider Newton's second law.
- F = m×a (force equal mass times acceleration).
Clearing the acceleration you get:
Then, since the mass is in the denominator and both the force that the cannon ball exerts on the cannon and the cannon exerts on the cannon ball are equal in magnitude, then the body that has the smaller mass (the cannon ball) will experience a greater acceleration, which is stated by the first choice: because the mass of the cannon ball is much less than the cannon.
Doesn't seem like we know much here, but we can answer it. Let's talk about what we know. We know it takes 3.24 s for the ball to go up and drop back down again. We know that gravity is the only force acting after the ball leaves the hand, so a = 9.8 m/s^2 (we'll say it's negative in our equations because down being negative is intuitive). We also know that it stops moving for a brief moment at the top of the arc, where v = 0 m/s. Because gravity is the only force, and it slows it down on the way up at the same rate it speeds it up on the way down and the distance covered in upward and downward motion is the same, we can confidently say that it will reach the top of its arc (where v = 0 and it turns around) in half the total time it is in the air, so it takes 1.62 s to reach the peak. Now we can use a kinematics equation, let's use vf = vi + a*t, where vf is final velocity and is 0, vi is initial velocity and is some unknown v we need to solve for, a is acceleration and is -9.8 m/s^2 and t is time and since this is just to the top of the arc, we'll use half the time so 1.62 s. We can solve for vi and plug stuff in like so: v = -a*t = -(-9.8m/s^2)*(1.62s) = 15.876 m/s.