Explanation:
The table is level and there are no other forces on the book, so the normal force is equal to the weight.
N = mg
N = (2.3 kg) (9.8 m/s²)
N = 22.5 N
 
        
                    
             
        
        
        
Answer:
75 rad/s
Explanation:
The angular acceleration is the time rate of change of angular velocity. It is given by the formula:
α(t) = d/dt[ω(t)]
Hence: ω(t) = ∫a(t) dt
Also, angular velocity is the time rate of change of displacement. It is given by:
ω(t) = d/dt[θ(t)]
θ(t) = ∫w(t) dt
θ(t) = ∫∫α(t) dtdt
Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:
θ(t) = ∫∫α(t) dtdt
θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt
θ(t) = ∫[2t³]dt = t⁴/2 rad
θ(t) = t⁴/2 rad
At θ(t) = 10 rev = (10 *  2π) rad = 20π rad, we can find t:
20π = t⁴/2
40π = t⁴
t = ⁴√40π
t = 3.348 s
ω(t) = ∫α(t) dt = ∫6t² dt = 2t³
ω(t) = 2t³
ω(3.348) = 2(3.348)³ = 75 rad/s
 
        
             
        
        
        
Answer:
1) Addition of a catalyst
2) To change the reaction rate of slope B to look like slope A, simply add a catalyst to speed up the rate of reaction, giving you a higher amount of products in a shorter amount of time (line A)
Explanation:
1 and 2)Two things can alter the rate of a reaction, either the addition of a catylist which will not alter the composition of the products or reactants, but will accelerate the reaction time, or an increase in temperature will also increase the rate at which a reaction will occur.
You could choose temperature also and have the same result, it's your choice both are correct, but catalyst is the easiest.
    
 
        
             
        
        
        
Answer:
The vapor pressure at 60.6°C is 330.89 mmHg
Explanation:
Applying Clausius Clapeyron Equation
![ln(\frac{P_2}{P_1}) = \frac{\delta H}{R}[\frac{1}{T_1}- \frac{1}{T_2}]](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7BP_1%7D%29%20%3D%20%5Cfrac%7B%5Cdelta%20H%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%20%5Cfrac%7B1%7D%7BT_2%7D%5D)
Where;
P₂ is the final vapor pressure of benzene = ?
P₁ is the initial vapor pressure of benzene = 40.1 mmHg
T₂ is the final temperature of benzene = 60.6°C = 333.6 K
T₁ is the initial temperature of benzene = 7.6°C = 280.6 K
ΔH is the molar heat of vaporization of benzene = 31.0 kJ/mol
R is gas rate = 8.314 J/mol.k
![ln(\frac{P_2}{40.1}) = \frac{31,000}{8.314}[\frac{1}{280.6}- \frac{1}{333.6}]\\\\ln(\frac{P_2}{40.1}) = 3728.65 (0.003564 - 0.002998)\\\\ln(\frac{P_2}{40.1}) = 3728.65  (0.000566)\\\\ln(\frac{P_2}{40.1}) = 2.1104\\\\\frac{P_2}{40.1} = e^{2.1104}\\\\\frac{P_2}{40.1} = 8.2515\\\\P_2 = (40.1*8.2515)mmHg = 330.89 mmHg](https://tex.z-dn.net/?f=ln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%20%5Cfrac%7B31%2C000%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B280.6%7D-%20%5Cfrac%7B1%7D%7B333.6%7D%5D%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%280.003564%20-%200.002998%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%203728.65%20%20%280.000566%29%5C%5C%5C%5Cln%28%5Cfrac%7BP_2%7D%7B40.1%7D%29%20%3D%202.1104%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%20e%5E%7B2.1104%7D%5C%5C%5C%5C%5Cfrac%7BP_2%7D%7B40.1%7D%20%3D%208.2515%5C%5C%5C%5CP_2%20%3D%20%2840.1%2A8.2515%29mmHg%20%3D%20330.89%20mmHg)
Therefore, the vapor pressure at 60.6°C is 330.89 mmHg