(I assume that the 4 directions north-south-east-west are meant with respect to the wire seen from the top.)
We can use the right-hand rule to understand the direction of the magnetic field generated by the wire. The thumb follows the direction of the current in the wire (upward), while the other fingers give the direction of the field in every point around the wire. Seen from the top, the field has an anti-clockwise direction. Therefore, if we take a point at east with respect to the wire, in this point the field has direction south.
Answer:
Global knowledge is information that is widely accepted and been proven as the truth. It is information that may not necessarily have a source because it is common knowledge and not easily attributed to a certain source. Personal ideas are original to the author and may not be widely accepted. It is important to give credit to others by citing their work to acknowledge that this is not your own findings but rather someone else's. It is plagiarism to use someone else's work as your own without giving credit to their work. -W0lf93
Explanation:
hope this helps
Answer:
beat frequency = 13.87 Hz
Explanation:
given data
lengths l = 2.00 m
linear mass density μ = 0.0065 kg/m
String A is under a tension T1 = 120.00 N
String B is under a tension T2 = 130.00 N
n = 10 mode
to find out
beat frequency
solution
we know here that length L is
L = n ×
........1
so λ =
and velocity is express as
V =
.................2
so
frequency for string A = f1 = 
f1 = 
f1 =
and
f2 =
so
beat frequency is = f2 - f1
put here value
beat frequency =
-
beat frequency = 13.87 Hz
Answer:
H = 1/2 g t^2 time to reach top of trajectory
v = g t time to reach top of trajectory when v is initial speed upwards
v = 5 g = 49 m/s 5 sec upwards and 5 sec downwards
Answer:
v = 5.75 x 10⁶ m/s
Explanation:
The radius (r) of the circular orbit taken by a charged particle is related to its speed perpendicular to a magnetic field of strength B, and is given by
r =
--------------(i)
Where,
q = charge of the particle
m = mass of the particle
Making v subject of the formula in equation (i) above gives
v =
-------------------(ii)
Given;
r = 20cm = 0.2m
B = 0.3T
v = unknown
q = charge of proton = 1.6 x 10⁻¹⁹ C
m = mass of the proton = 1.67 x 10⁻²⁷kg
Substitute the values of m, q, B and r into equation (ii) above to get;
v = 
Solving for v gives:
v = 5.75 x 10⁶ m/s
Therefore, the velocity of the proton is 5.75 x 10⁶ m/s