The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4
To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;
Substituting the values into the formula, we have;
<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885
Answer:
A_resulting = 0.2 m
Explanation:
Let's analyze the impact of the pulse with the pole, this is a fixed obstacle that does not move therefore by the law of action and reluctant, the force that the pole applies on the rope is of equal magnitude to the force of the rope on the pole (pulse), but opposite directional, so the reflected pulse reverses its direction and sense.
With this information we analyze a point on the string where the incident pulse is and each reflected with an amplitude A = 0.1 m, the resulting is
A_res = 2A
A_resultant = 2 .01
A_resulting = 0.2 m
Answer:
The correct answers are
(a) It decreases to 1/3 L
(ii) is (c) It is constant
Explanation:
to solve this, we list out the number of knowns and unknowns so as to determine the correct equation to solve the problem
The given variables are as follows
Initial volume V1 = 1L
V2 = Unknown
Initial Temperature T1 = 300K
let us assume that the balloon is perfectly elastic
At 300K the balloon is filled and it stretches to maintain 1 atmosphere
at 100K the content of the balloon cools reducing the excitement of the gas content which also reduces the pressure, however, the balloon being perfectly elastic, contracts to maintain the 1 atmospheric pressure, hence the answer to (ii) is (c) It is constant,
For (i) since we know that the pressure of the balloon is constant
by Charles Law V1/T1 =V2/T2
or V2 = (V1/T1)×T2 =× = × L = L/3 hence the correct answer to (i) is 1/3L
Answer:
a. The angular frequency is doubled.
e. The period is reduced to one-half of what it was.
Explanation:
Angular frequency is given as;
ω = 2πf
when the frequency is doubled
Thus, the angular frequency will be doubled.
Amplitude in simple harmonic motion is the maximum displacement.
Frequency is related to period in simple harmonic motion as given in the equation below;
when the frequency is doubled;
Thus, the period will be reduced to one-half of what it was.
ionic compound. The atom that lost the electron becomes a cation, and the atom that gains an electron becomes an anion. The cation and anion bond together because they have opposite charges to form an ionic compound. The question may be looking for just cation or anion, though.