1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
3 years ago
6

A cartridge electrical heater is shaped as a cylinder of length L=200 mm and outer diameter D=20 mm. Under normal operating cond

itions the heater dissipates 2 kW while submerged in a water flow that is at 20C and provides a convection heat transfer coefficient of h=5000 W/mK. Neglecting heat transfer from the ends of the heater, determine its surface temperature Ts. If the water flow is inadvertently terminated while the heater continues to operate, the heater surface is ex posed to air that is also at 20C but for which h=50 W/m K. What is the corresponding surface temperature? What are the consequences of such an event?
Engineering
1 answer:
Setler79 [48]3 years ago
5 0

Answer:

When water is surrounding T_s = 34.17 degree C

When air surrounding T_S = 1434.7 degree C

from above calculation we can conclude that air is less effective than water  as heat transfer agent

Explanation:

Given data:

length  = 300 mm

Outer diameter  = 30 mm

Dissipated energy = 2 kw = 2000 w

Heat transfer coefficient IN WATER = 5000 W/m^2 K

Heat transfer coefficient in air  = 50 W/m^2 K

we know that q_{convection} =  P

From newton law of coding we have

q_{convection} =  hA(T_s -  T_{\infity})

T_s is surface temp.

T - temperature at surrounding

P = hA(T_s -  T_{\infity})[tex]\frac{P}{\pi hDL} =  (T_s -  T_{\infity})

solving for[/tex] T_s [/tex] w have

T_s = T_{\infty} + \frac{P}{\pi hDL}

T_s = 20 + \frac{2000}{\pi 5000\times 0.03\times 0.3}

T_s = 34.17 degree C

When air is surrounding we have

T_s = T_{\infty} + \frac{P}{\pi hDL}

T_s = 20 + \frac{2000}{\pi 2000\times 0.03\times 0.3}

T_s = 1434.7 degree C

from above calculation we can conclude that air is less effective than water  as heat transfer agent

You might be interested in
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.0 mm (0.20 in
Sonja [21]

The load is 17156 N.

<u>Explanation:</u>

First compute the flexural strength from:  

σ = FL / πR^{3}

   = 3000 \times (40 \times 10^-3) / π (5 \times 10^-3)^3

σ = 305 \times 10^6 N / m^2.

We can now determine the load using:

F = 2σd^3 / 3L

  = 2(305 \times 10^6) (15 \times 10^-3)^3 / 3(40 \times 10^-3)

F = 17156 N.  

7 0
3 years ago
At a point on the free surface of a stressed body, the normal stresses are 20 ksi (T) on a vertical plane and 30 ksi (C) on a ho
victus00 [196]

Answer:

The principal stresses are σp1 = 27 ksi, σp2 = -37 ksi and the shear stress is zero

Explanation:

The expression for the maximum shear stress is given:

\tau _{M} =\sqrt{(\frac{\sigma _{x}^{2}-\sigma _{y}^{2}  }{2})^{2}+\tau _{xy}^{2}    }

Where

σx = stress in vertical plane = 20 ksi

σy = stress in horizontal plane = -30 ksi

τM = 32 ksi

Replacing:

32=\sqrt{(\frac{20-(-30)}{2} )^{2} +\tau _{xy}^{2}  }

Solving for τxy:

τxy = ±19.98 ksi

The principal stress is:

\sigma _{x}+\sigma _{y} =\sigma _{p1}+\sigma _{p2}

Where

σp1 = 20 ksi

σp2 = -30 ksi

\sigma _{p1}  +\sigma _{p2}=-10 ksi (equation 1)

\tau _{M} =\frac{\sigma _{p1}-\sigma _{p2}}{2} \\\sigma _{p1}-\sigma _{p2}=2\tau _{M}\\\sigma _{p1}-\sigma _{p2}=32*2=64ksi equation 2

Solving both equations:

σp1 = 27 ksi

σp2 = -37 ksi

The shear stress on the vertical plane is zero

4 0
3 years ago
Considering the analogy between electrical circuit and thermal circuit, show your approach to derive an expression for the therm
Simora [160]

Answer:

Thermal resistance for a wall depends on the material, the thickness of the wall and the cross-section area.

Explanation:

Current flow and heat flow are very similar when we are talking about 1-dimensional energy transfer. Attached you can see a picture we can use to describe the heat flow between the ends of the wall. First of all, a temperature difference is required to flow heat from one side to the other, just like voltage is required for current flow.  You can also see that R_{th} represents the thermal resistance. The next image explains more about the parameters which define the value of the thermal resistances which are the following:

  1. Wall Thickness.  More thickness, more thermal resistance.
  2. Material thermal conductivity (unique value for each material). More conductivity, less thermal resistance.
  3. Cross-section Area. More cross-section area, less thermal resistance.

A expression to define  the thermal resistance for the wall is as follows:  R_{th} =\frac{l}{Ak}, where  l is the distance between the tow sides of the wall, that is to say the wall thickness; A is the cross-section area and k is the material conducitivity.

5 0
2 years ago
For this problem, you may not look at any other code or pseudo-code (even if it is on the internet), other than what is on our w
sergiy2304 [10]

Answer:

(a)

(i) pseudo code :-

current = i

// assuming parent of root is -1

while A[parent] < A[current] && parent != -1 do,

if A[parent] < A[current] // if current element is bigger than parent then shift it up

swap(A[current],A[parent])

current = parent

(ii) In heap we create a complete binary tree which has height of log(n). In shift up we will take maximum steps equal to the height of tree so number of comparison will be in term of O(log(n))

(b)

(i) There are two cases while comparing with grandparent. If grandparent is less than current node then surely parent node also will be less than current node so swap current node with parent and then swap parent node with grandparent.

If above condition is not true then we will check for parent node and if it is less than current node then swap these.

pseudo code :-

current = i

// assuming parent of root is -1

parent is parent node of current node

while A[parent] < A[current] && parent != -1 do,

if A[grandparent] < A[current] // if current element is bigger than parent then shift it up

swap(A[current],A[parent])

swap(A[grandparent],A[parent])

current = grandparent

else if A[parent] < A[current]

swap(A[parent],A[current])

current = parent

(ii) Here we are skipping the one level so max we can make our comparison half from last approach, that would be (height/2)

so order would be log(n)/2

(iii) C++ code :-

#include<bits/stdc++.h>

using namespace std;

// function to return index of parent node

int parent(int i)

{

if(i == 0)

return -1;

return (i-1)/2;

}

// function to return index of grandparent node

int grandparent(int i)

{

int p = parent(i);

if(p == -1)

return -1;

else

return parent(p);

}

void shift_up(int A[], int n, int ind)

{

int curr = ind-1; // because array is 0-indexed

while(parent(curr) != -1 && A[parent(curr)] < A[curr])

{

int g = grandparent(curr);

int p = parent(curr);

if(g != -1 && A[g] < A[curr])

{

swap(A[curr],A[p]);

swap(A[p],A[g]);

curr = g;

}

else if(A[p] < A[curr])

{

swap(A[p],A[curr]);

curr = p;

}

}

}

int main()

{

int n;

cout<<"enter the number of elements :-\n";

cin>>n;

int A[n];

cout<<"enter the elements of array :-\n";

for(int i=0;i<n;i++)

cin>>A[i];

int ind;

cout<<"enter the index value :- \n";

cin>>ind;

shift_up(A,n,ind);

cout<<"array after shift up :-\n";

for(int i=0;i<n;i++)

cout<<A[i]<<" ";

cout<<endl;

}

Explanation:

8 0
3 years ago
What is the primary function of NCEES?
joja [24]
National Council of Examiners for engineering and surveying a nonprofit organization
7 0
3 years ago
Other questions:
  • Who does the narrator blame for the loss of her job as editor-in-chief? <br> see if i care readworks
    8·2 answers
  • A 2-m3 rigid tank initially contains air at 100 kPa and 22°C. The tank is connected to a supply line through a valve. Air is flo
    14·1 answer
  • 1. A turbine in a steam power plant operates isentropically with an inlet pressure (P3) of 3.5 MPa and inlet temperature (T3) of
    9·1 answer
  • Is cross flow more efficient or counter flow
    13·1 answer
  • The coefficient of performance of a reversible refrigeration cycle is always (a) greater than, (b) less than, (c) equal to the c
    12·1 answer
  • What is the function of engineering
    6·1 answer
  • What is the difference between a series circuit and a parallel circuit?
    11·2 answers
  • For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the stiffness of the members is km = 2.
    14·1 answer
  • How pine are processed ????
    10·1 answer
  • Find the differential and evaluate for the given x and dx: y=sin2xx,x=π,dx=0.25
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!