Answer:
I believe reverse boost valve.
Explanation:
Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)
The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)
Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current
I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches
R1 = (8 V)/(3 A) = 8/3 Ω
R2 = (8 V)/(4 A) = 2 Ω
R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω
V1 = V2 = V3 = 8 V
Answer:
$5.184
Explanation:
The cost can be calculated using the formula: 
Before using this, we require the following conversions:
<em>320 W → kW:</em>
<em>30 Days → Hours:</em>

Using the above stated formula:

Answer:
The heat transfer is 29.75 kJ
Explanation:
The process is a polytropic expansion process
General polytropic expansion process is given by PV^n = constant
Comparing PV^n = constant with PV^1.2 = constant
n = 1.2
(V2/V1)^n = P1/P2
(V2/0.02)^1.2 = 8/2
V2/0.02 = 4^(1/1.2)
V2 = 0.02 × 3.2 = 0.064 m^3
W = (P2V2 - P1V1)/1-n
P1 = 8 bar = 8×100 = 800 kPa
P2 = 2 bar = 2×100 = 200 kPa
V1 = 0.02 m^3
V2 = 0.064 m^3
1 - n = 1 - 1.2 = -0.2
W = (200×0.064 - 800×0.02)/-0.2 = -3.2/-0.2 = 16 kJ
∆U = 55 kJ/kg × 0.25 kg = 13.75 kJ
Heat transfer (Q) = ∆U + W = 13.75 + 16 = 29.75 kJ
Answer:
MUDA MUDA A certain vehicle loses 3.5% of its value each year. If the vehicle has an initial value of $11,168, construct a model that represents the value of the vehicle after a certain number of years. Use your model to compute the value of the vehicle at the end of 6 years.
Explanation: