Answer:
a) 0.714g of bicarbonate of soda are required.
b) 0.221g of Al(OH)₃ are required
Explanation:
The reactions of HCl with bicarbonate of soda and aluminium hydroxide are:
HCl + NaHCO₃ → H₂O + NaCl + CO₂
3 HCl + Al(OH)₃ → 3H₂O + AlCl₃
The moles of HCl that we need neutralize are:
50mL = 0.050L * (0.17mol / L) = 0.0085 moles HCl
To solve these problem we need to find the moles of the antacid using the chemical reaction and its mass using its molar mass;
<em>a) </em><em>Moles NaHCO₃ = Moles HCl = 0.0085 moles </em>
The mass is -Molar mass NaHCO₃: -84g/mol-
0.0085 moles * (84g / mol) = 0.714g of bicarbonate of soda are required
b) 0.0085 moles HCl * (1mol Al(OH)₃ / 3mol HCl) = 2.83x10⁻³ moles Al(OH)₃
The mass is -Molar mass: 78g/mol-:
2.83x10⁻³ moles Al(OH)₃ * (78g/mol) =
<h3>0.221g of Al(OH)₃ are required</h3>
Answer:
Gold
Explanation:
We are given that
Mass of sample ,m=385 g
Volume ,V=20mL
We have to find the coin is gold or yellow brass.
We know that
Density=
Using the formula
Density of coin=19.3g/mL
Density of gold=19.3g/mL
Hence, the coin is gold.
Answer:
Greater
Greater
Explanation:
The amplitude of a wave is the height of the wave or the vertical displacement of the wave motion. We determine a wave amplitude usually by looking at the graph of the wave.
Amplitude is directly proportional to the energy of a wave. The higher the amplitude of a wave, the more its energy.
Frequency is the number of waves that passes a point at a particular instance of time. It is also directly proportional to the energy carried by a wave. The higher the frequency of a wave, the greater its energy.
You can make a solution saturated by Adding more solute. Hope this helps, good luck.