When positive externalities are present in a market, it means that:
Private benefits are less than social benefits
Answer:
The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
Explanation:
- To solve this problem, we use Clausius Clapeyron equation: ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂).
- The first case: P₁ = 1 atm = 760 torr and T₁ = 451.0 K.
- The second case: P₂ = <em>??? needed to be calculated</em> and T₂ = 61.5 °C = 334.5 K.
- ΔHvap = 48.8 KJ/mole = 48.8 x 10³ J/mole and R = 8.314 J/mole.K.
- Now, ln(P₁/P₂) = (ΔHvap / R) (1/T₁ - 1/T₂)
- ln(760 torr /P₂) = (48.8 x 10³ J/mole / 8.314 J/mole.K) (1/451 K - 1/334.5 K)
- ln(760 torr /P₂) = (5869.62) (-7.722 x 10⁻⁴) = -4.53.
- (760 torr /P₂) = 0.01075
- Then, P₂ = (760 torr) / (0.01075) = 70691.73 torr.
So, The vapor pressure of benzaldehyde at 61.5 °C is 70691.73 torr.
<h3>Answer:</h3>
4 mol O₂
<h3>General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] CH₄ + 2O₂ → CO₂ + 2H₂O
[Given] 4 mol H₂O
[Solve] x mol O₂
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol H₂O → 2 mol O₂
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

yes i think he is real but it is what you think
As a result of high winds and water from a storm surge, homes, businesses, and crops may be destroyed or damaged, public infrastructure may also be compromised, and people may suffer injuries or loss of life.