Answer:
b. Heat flows from the surroundings to the system and the temperature of the water decreases.
Explanation:
The laws of thermodynamics lets us know that energy is neither created nor destroyed but can be converted from one form to another. Also, energy transfer does accompany chemical reactions in the form of heat.
For an endothermic reaction, heat is absorbed by the system from the surroundings. This leads to a drop in the temperature of the surroundings as energy is removed.
This implies that the water temperature decreases.
Answer:
Ksp = [ Cu+² ] [ OH-] ²
molar mass Cu(oH )2 ==> M= 63.546 (1) + 16 (2) + 1 (2) = 97.546 g/mol
Ksp = [ Cu+² ] [ OH-] ²
Ksp [ cu (OH)2 ] = 2.2 × 10-²⁰
|__________|___<u>Cu</u><u>+</u><u>²</u><u> </u>__|_<u>2</u><u>OH</u><u>-</u>____|
|<u>Initial concentration(M</u>)|___<u>0</u>__|_<u>0</u>______|
<u>|Change in concentration(M)</u>|_<u>+S</u><u> </u>|__<u>+2S</u>__|
|<u>Equilibrium concentration(M)|</u><u>_S</u><u> </u><u>_</u><u>|</u><u>2S___</u><u>|</u>
Ksp = [ Cu+² ] [ OH-] ²
2.2 ×10-²⁰ = (S)(2S)²= 4S³
![s = \sqrt[3]{ \frac{2.2 \times {10}^{ - 20} }{4} } = 1.8 \times {10}^{ - 7}](https://tex.z-dn.net/?f=s%20%3D%20%20%5Csqrt%5B3%5D%7B%20%5Cfrac%7B2.2%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%2020%7D%20%7D%7B4%7D%20%7D%20%20%3D%201.8%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%207%7D%20)
S = 1.8 × 10-⁷ M
The molar solubility of Cu(OH)2 is 1.8 × 10-⁷ M
Solubility of Cu (OH)2 =

<h3>
Solubility of Cu (OH)2 = 1.75428 × 10 -⁵ g/ L</h3>
I hope I helped you^_^
When a beta particle<span> is emitted from the nucleus the nucleus has one more proton and one less neutron. This means the atomic mass number remains unchanged and the atomic number increases by 1.
We can also say that </span>beta decay<span> is a type of radioactive </span>decay<span> in which a proton is transformed into a neutron inside an atomic nucleus.
</span><span>a) converts a neutron into a proton</span>