Answer:
The orbital speed of this second satellite is 5195.16 m/s.
Explanation:
Given that,
Orbital radius of first satellite 
Orbital radius of second satellite 
Mass of first satellite 
Mass of second satellite 
Orbital speed of first satellite = 4800 m/s
We need to calculate the orbital speed of this second satellite
Using formula of orbital speed

From this relation,

Now, 

Put the value into the formula


Hence, The orbital speed of this second satellite is 5195.16 m/s.
Answer:
A & B
Explanation:
A & B Would be the right answer since Morse code cannot be represented through the height of the fire.
To solve the problem, it is necessary the concepts related to the definition of area in a sphere, and the proportionality of the counts per second between the two distances.
The area with a certain radius and the number of counts per second is proportional to another with a greater or lesser radius, in other words,


M,m = Counts per second
Our radios are given by



Therefore replacing we have that,






Therefore the number of counts expect at a distance of 20 cm is 19.66cps
Answer:
Part a)

Part b)

Explanation:
As we know that mountain climber is at rest so net force on it must be zero
So we will have force balance in X direction


now we will have force balance in Y direction


Part a)
so from above equations we have



Part b)
Now for tension in right string we will have


Answer:
The correct option is;
Force of Friction
Explanation:
As coach Hogue rode his motorcycle round in circle on the wet pavement, the motorcycle and the coach system tends to move in a straight path but due to intervention by the coach they maintain the circular path
The motion equation is
v = ωr and we have the centripetal acceleration given by
α = ω²r and therefore centripetal force is then
m×α = m × ω²r = m × v²/r
The force required to keep the coach and the motorcycle system in their circular path can be obtained by the impressed force of friction acting towards the center of the circular motion.