1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lilit [14]
3 years ago
14

A person wearing a shoulder harness can survive a car crash if the acceleration is smaller than -300 m/s . assuming constant acc

eleration how far must the front end of the car collapse if 2 it crashes while going 101 km/hr?
Physics
1 answer:
mars1129 [50]3 years ago
3 0

To solve this problem, we use the equation:

<span>d = (v^2  - v0^2) / 2a</span>

 

where,

d = distance of collapse

v0 = initial velocity = 101 km / h = 28.06 m / s

v = final velocity = 0

a = acceleration = - 300 m / s^2

 

d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)

<span>d = 1.31 m</span>

You might be interested in
A thin nonconducting rod with a uniform distribution of positive charge Q is bent into a complete circle of radius R. The centra
Dmitriy789 [7]

Answer:

(a). If z = 0, The electric field due to the rod is zero.

(b). If z =  ∞, The electric field due to the rod is E\propto\dfrac{1}{z^2}.

(c). The positive distance is \dfrac{R}{\sqrt{2}}

(d). The maximum magnitude of electric field is 1.54\times10^{4}\ N/C

Explanation:

Given that,

Radius = 2.00 cm

Charge = 4.00 mC

(a). If the radius and charge are R and Q.

We need to calculate the electric field due to the rod

Using formula of electric field

E=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{Qz}{(z^2+R^2)^{\frac{2}{3}}}

Where, Q = charge

z = distance

If z = 0,

Then, The electric field is

E=0

(b). If z = ∞, z>>R

So, R = 0

Then, the electric field is

E=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{Q}{z^2}

E\propto\dfrac{1}{z^2}

(c). In terms of R,

We need to calculate the positive distance

If E\rightarrow E_{max}

Then, \dfrac{dE}{dz}=0

\dfrac{Q}{4\pi\epsilon_{0}}(\dfrac{(z^2+R^2)^\frac{3}{2}-\dfrac{3z}{2}(z^2+R^2)^\dfrac{1}{2}}{(z^2+R^2)^2})=0

Taking only positive distance

z=\dfrac{R}{\sqrt{2}}

(d). If R = 2.00 and Q = 4.00 mC

We need to calculate the maximum magnitude of electric field

Using formula of electric field

E_{max}=\dfrac{1}{4\pi\epsilon_{0}}\dfrac{Qz}{(z^2+R^2)^{\frac{2}{3}}}

E_{max}=9\times10^{9}\times\dfrac{4.0\times10^{-6}\times\dfrac{2.00}{\sqrt{2}}}{((\dfrac{2.00}{\sqrt{2}})^2+(2.00)^2)^{\frac{2}{3}}}

E_{max}=15418.7\ N/C

E_{max}=1.54\times10^{4}\ N/C

Hence, (a). If z = 0, The electric field due to the rod is zero.

(b). If z =  ∞, The electric field due to the rod is E\propto\dfrac{1}{z^2}.

(c). The positive distance is \dfrac{R}{\sqrt{2}}

(d). The maximum magnitude of electric field is 1.54\times10^{4}\ N/C

6 0
3 years ago
Suppose you take a short piece of wire that is not attached to anything and move it up and down in a magnetic field. Explain whe
Otrada [13]

Answer:

No.

Explanation:

  • According to Faraday's law, the induced emf in the circuit is given by :

         e=\dfrac{d\phi}{dt}, it is proportional to the rate of change of magnetic flux.

  • In this case, a short piece of wire that is not attached to anything and move it up and down in a magnetic field. It means that the circuit is not completed here. It is an open circuit. For the induction of current, a circuit must be completed.
  • Hence, no current will induce.
4 0
3 years ago
Read 2 more answers
A heliocentric system is _____-centered.<br><br> Milky Way<br> Earth<br> Moon<br> Sun
madreJ [45]

Answer: Sun

Explanation:

7 0
3 years ago
Read 2 more answers
To introduce you to the concept of escape velocity for a rocket. the escape velocity is defined to be the minimum speed with whi
Mama L [17]
A projectile fired upward from the Earth's surface will usually slow down, come momentarily to rest, and return to Earth. For a certain initial speed, however it will move upward forever, with its speed gradually decreasing to zero just as its distance from Earth approaches infinity. The initial speed for this case is called escape velocity. You can find the escape velocity v for the Earth or any other planet from which a projectile might be launched using conservation of energy. The projectile of mass m leaves the surface of the body of mass M and radius R with a kinetic energy Ki = mv²/2 and potential energy Ui = -GMm/R. When the projectile reaches infinity, it has zero potential energy and zero kinetic energy since we are seeking the minimum speed for escape. Thus Uf = 0 and Kf = 0. And from conservation of energy,
Ki + Ui = Kf + Uf
mv²/2 -GMm/R = 0
∴ v = √(2GM/R) 

This is the expression for escape velocity. 
3 0
3 years ago
Read 2 more answers
A 9 volt battery produces a current of 0.2A. What is the resistance?
nekit [7.7K]
9/0.2 would be the ans
4 0
3 years ago
Other questions:
  • In Shinto, there is s strong emphasis on purification and recognition of the role environment plays in creating harmony. Explore
    13·1 answer
  • What is the net displacement of the particle between 0 seconds and 80 serving seconds
    11·1 answer
  • Which wave diagram BEST represents a dim red sunset on the right side to the light from an intense ultraviolet bug light on the
    9·2 answers
  • Which of these is closest to the age of our solar system?
    9·1 answer
  • An electron with a kinetic energy of 3.90 ev collides with a sodium atom.
    8·1 answer
  • An object rolls east at a steady speed of 12m/s for 3.0 seconds. what distance did it travel
    9·1 answer
  • A soccer ball is released from rest at the top of a grassy incline. After 4.1 seconds, the ball travels 43 meters and 1.0 s afte
    6·1 answer
  • A bodybis thrown vertically upward with velocity of 30m/s calculate the the maximum height attained​
    9·2 answers
  • Can someone please answer this, ill give you brainliest Would be very appreciated.
    11·2 answers
  • A ball is projected at an angle of 30° above the horizontal with a speed of 35 m/s. What will be its approximate horizontal rang
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!