Hi!Schrodinger equation is written as HΨ = EΨ, where h is said to be a Hamiltonian operator.
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s
Answer:
1 bright fringe every 33 cm.
Explanation:
The formula to calculate the position of the m-th order brigh line (constructive interference) produced by diffraction of light through a diffraction grating is:

where
m is the order of the maximum
is the wavelength of the light
D is the distance of the screen
d is the separation between two adjacent slit
Here we have:
is the wavelength of the light
D = 1 m is the distance of the screen (not given in the problem, so we assume it to be 1 meter)
is the number of lines per mm, so the spacing between two lines is

Therefore, substituting m = 1, we find:

So, on the distant screen, there is 1 bright fringe every 33 cm.
Plans used for work that has to do with construction in or around Earth are called, “Civil Plans.”
Hope this helped!
<span>action is the one car hitting the other, reaction is the other car being pushed away</span>