Answer:
Work done, W = 5534.53 J
Explanation:
It is given that,
Force acting on the piano, F = 6157 N
It is pushed up a distance of 2.41 m friction less plank.
Let W is the work done in sliding the piano up the plank at a slow constant rate. It is given by :

Since,
(in vertical direction)

W = 5534.53 J
So, the work done in sliding the piano up the plank is 5534.53 J. Hence, this is the required solution.
We could determine the acceleration using this formula

Given from the question v₀ = 23 m/s, v₁ = 0 (the car stops), t = 5 s
plug in the numbers



a = -4.6
The acceleration is -4.6 m/s²
Answer:
Explanation:
We know that , If the frictional force on a system is zero , then the total energy of a system will be conserved.
By using energy conservation
KE₁ + U₁ = KE₂ + U₂
KE₁=Kinetic energy at location 1
U₁ =Potential energy at location 1
KE₂=Kinetic energy at location 2
U₂=Potential energy at location 2
Therefore, Raymond is thinking in a right way.