The speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
The angular momentum(L) of an electron moving in a circular path is given by the formula,
L = mvr ........(i)
We know that the radius of the path of an electron in a magnetic field is
r = mv/qB
Putting this value in equation (i),
L = mv x mv/qB
or L = (mv)^2/qB
Putting the given values in the above equation,
4 x 10^-25 = (9.1x10^-31)^2 x v^2/ 1.6 x 10^-19 x 1 x 10^-3
v comes out to be 8.88 x 10^7 m/s.
Hence, the speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
To know more about "angular momentum", refer to the following link:
brainly.com/question/15104254?referrer=searchResults
#SPJ4
Formula for potential energy is V=mgh, where m is mass in KG, g is earth acceleration (10 m/s^2), and h its height in meters. We know mass, acceleration is constant and also known, we know height also. Lets substitute
V=75*10*300=225000[J]=225[kJ] - its the answer
Answer:
changes electrical energy into mechanical energy
The other of the four organic molecules is carbohydrates.
All four of them are:
Nucleic Acids (DNA and RNA stuff)
Proteins
Lipids
& Carbohydrates
Answer:
t = 94.91 nm
Explanation:
given,
wavelength of the light = 522 nm
refractive index of the material = 1.375
we know the equation
c = ν λ
where ν is the frequency of the wave
c is the speed of light


ν = 5.75 x 10¹⁴ Hz
the thickness of the coating will be calculated using


t = 94.91 nm
the thickness of the coating will be equal to t = 94.91 nm