Answer:
The metal which reduces the other compound is the one higher in reactivity. So in this case, it is.
Explanation:
Answer:
you are not posted question
Answer:
23.8g of sodium phosphate are formed
Explanation:
Based on the reaction of sodium, Na, with phosphoric acid, H₃PO₄:
3Na + H₃PO₄ → Na₃PO₄ + 3/2 H₂
<em>3 moles of sodium produce 1 mole of sodium phosphate</em>
<em />
To solve this question we must find the moles of sodium in 10g. Using the chemical reaction we can find the moles -And the mass- of sodium phosphate produced, as follows:
<em>Moles Na -Molar mass: 22.99g/mol-</em>
10g * (1mol / 22.99g) = 0.435 moles Na
<em>Moles Na₃PO₄:</em>
0.435 moles Na * (1mol Na₃PO₄ / 3mol Na) = 0.145 moles Na₃PO₄
<em>Mass Na₃PO₄ -Molar mass: 163.94g/mol-</em>
0.145 moles Na₃PO₄ * (163.94g/mol) =
<h3>23.8g of sodium phosphate are formed</h3>
Answer:
In comparison to Part 1 of this experiment, we observed similar reactions when determining the make up of our unknown. When testing for Mn2+ we observed a color change that resulted in a darker brown/red color, when testing for Co2+ we observed the formation of foamy bubbles but we could not conclude that a gas had formed, when testing for Fe3+ the result was a liquid red in color, when testing for Cr3+ we observed no change, when testing for Zn2+ we observed the formation of a pink/red liquid, when testing for K+ we observed the formation of a precipitate, when testing for Ca2+ we observe the formation of a precipitate. Sources of error may have occurred when observing whether or not an actual reaction had taken place or not, using glassware that wasn't fully cleaned, or the accidental mix of various other liquids in the lab
Explanation: