Answer:
The relationship is only between the coefficients A, E and J which is:
. The remaining coefficients can be anything without any constraints.
Explanation:
Given:
The three components of velocity is a velocity field are given as:

The fluid is incompressible.
We know that, for an incompressible fluid flow, the sum of the partial derivatives of each component relative to its direction is always 0. Therefore,

Now, let us find the partial derivative of each component.

Hence, the relationship between the coefficients is:

There is no such constraints on other coefficients. So, we can choose any value for the remaining coefficients B, C, D, F, G and H.
Answer:
Check the explanation
Explanation:
The beat frequency is
df = f2 - f1
the wavelength is
lamda1 = (v/f1)
and lamda2 = (v/f2)
where v = 340 m/s,f1 = 25.0 kHz and f2 = 20.0 kHz
Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Answer:
28.6 ohm
Explanation:
there is a 3rd resistor in series. voltage drop across the resistors will be equal to 60v
7*.2+7*.2 +.2x = 60
2.8+.2x = 60
.2x = 57.2
x = 28.6
Answer:
The power expended by the car during the acceleration is 116.38KW
Explanation:
Power is a term that defines the rate at which energy is expended whenever work is done.
Power can be given as Force X velocity.
Force can be found using the formula:
F = mass X acceleration.
In this case,
F = 1100kg X 4.6m/s2
F = 5060 N
The final velocity, v of the car can be obtained from this formula:
v = u+ at
U = initial velocity = 0 (since the car started from rest)
a = acceleration = 4.6m/s2
t = time = 5 seconds
v = 0 + 4.6 X 5 = 23 m/s
Therefore, the power expended is 5060N X 23m/s=116,380W
The power expended by the car during the acceleration is 116.38KW