1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gtnhenbr [62]
3 years ago
8

A third class lever has a mechanical advantage of <1. What is an example of a third class lever and why use it?

Physics
2 answers:
AVprozaik [17]3 years ago
7 0

B.) Baseball bat; increases velocity

All third class levers have a mechanical advantage less than 1. Since the output end has a longer distance from the fulcrum than the input point, the output end moves at a greater velocity than the input point. Because of this, third class levers are commonly used when trying to hit an object with as much velocity as possible.


34kurt3 years ago
5 0
<span>Baseball bat. The handle of the bat is the fulcrum. Exerting a force from the handle supplies the input force just near the middle, while the other end of the baseball bat pushes the ball with the output forces. The input force is greater than the output force but the output load is able to move farther, and this increases the ball's velocity.</span>
You might be interested in
What are all stars made of
ivolga24 [154]
Stars are huge celestial bodies made mostly of hydrogen and helium that produce light and heat from the churning nuclear forges inside their cores. Aside from our sun, the dots of light we see in the sky are all light-years from Earth. They are the building blocks of galaxies, of which there are billions in the universe. It’s impossible to know how many stars exist, but astronomers estimate that in our Milky Way galaxy alone, there are about 300 billion.
7 0
3 years ago
Discuss how the primary colors of light differ from the primary pigment colors
Bad White [126]
The shades are very different
6 0
3 years ago
Question 5 of 5<br> What do the arrows in the photograph represent?
tensa zangetsu [6.8K]

BALANCED FORCES

When two forces acting on an object are equal in size but act in opposite directions, we say that they are balanced forces . a stationary object stays still. ... a moving object continues to move at the same speed and in the same direction.

- <em>BRAINLIEST answerer</em>

5 0
2 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
Why is density used to determine the identity of matter?
dedylja [7]
 a substance's density is the same at a certain pressure and temperature, and the density of one substance is usually different than another substance.
4 0
3 years ago
Other questions:
  • A 72 kg skydiver is descending on a parachute. His speed is still increasing at 1.2 m/s2. What are the magnitude and direction o
    15·1 answer
  • Describe what happens when u mix hot water with cold
    12·1 answer
  • A pendulum swings back and forth 5 times in 10 seconds what is the period of the pendulum?
    12·1 answer
  • HELP ME ASAP PLEASE
    11·1 answer
  • Which force acts between two surfaces to prevent or slow motion
    15·1 answer
  • What is solar made from
    12·1 answer
  • A block of wood 3 cm on each side has a mass of 27 <br> g. what is the density of the block
    8·1 answer
  • Name the three different types of radiation and describe how they are different in their penetrating abilities. Explain.
    6·2 answers
  • If the Net Force of the object is 30 N to the left, and mass is 3 kg what is the objects acceleration?
    9·1 answer
  • The second-order dark fringe in a single-slit diffraction pattern is 1.40 mm from the center of the central maximum. Assuming th
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!