the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes.
Answer:
a. 12.12°
b. 412.04 N
Explanation:
Along vertical axis, the equation can be written as
T_1 sin14 + T_2sinA = mg
T_2sinA = mg - T_1sin12.5 ....................... (a)
Along horizontal axis, the equation can be written as
T_2×cosA = T_1×cos12.5 ......................... (b)
(a)/(b) given us
Tan A = (mg - T_1sin12.5) / T_1 cos12.5
= (176 - 413sin12.5) / 413×cos12.5
A = 12.12 °
(b) T2 cosA = T1 cos12.5
T2 = 413cos12.5/cos12.12
= 412.04 N
please, give the question properly.
Answer:
- 0.6
Explanation:
Given that angle between normal y axis is 62° so angle between normal
and x axis will be 90- 62 = 28 °. Since incident ray is along x axis , 28 ° will be the angle between incident ray and normal ie it will be angle of incidence
Angle of incidence = 28 °
angle of reflection = 28°
Angle between incident ray and reflected ray = 28 + 28 = 56 °
Angle between x axis and reflected ray = 56 °
x component of reflected ray
= - cos 56 ( it will be towards - ve x axis. )
- 0.6